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Off-policy Evaluation for Multiple Actions in the Presence of
Unobserved Confounders

Anonymous Author(s)

Abstract
Off-policy evaluation (OPE) is a crucial problem in reinforcement

learning (RL), where the goal is to estimate the long-term cumu-

lative reward of a target policy using historical data generated by

a potentially different behaviour policy. In many real-world appli-

cations, such as precision medicine and recommendation systems,

unobserved confounders may influence the action, reward, and

state transition dynamics, which leads to biased estimates if not

properly addressed. While existing methods for handling unob-

served confounders in OPE focus on single-action settings, they

are less effective in multi-action scenarios commonly found in

practical applications, where an agent can take multiple actions

simultaneously. In this paper, we propose a novel auxiliary variable-

aided method for OPE in multi-action settings with unobserved

confounders. Our approach overcomes the limitations of traditional

auxiliary variable methods for multi-action scenarios by requir-

ing only a single auxiliary variable, relaxing the need for as many

auxiliary variables as the actions. Through theoretical analysis,

we prove that our method provides an unbiased estimation of the

target policy value. Empirical evaluations demonstrate that our es-

timator achieves better performance compared to existing baseline

methods, highlighting its effectiveness and reliability in addressing

unobserved confounders in multi-action OPE settings.
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1 Introduction
Off-policy evaluation (OPE) is important for decision-making under

uncertainty, and it is a key topic in reinforcement learning (RL).

Unlike online RL, where policies are evaluated in real-time, in OPE
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we aim to estimate the long-term cumulative reward of a new policy

(i.e., target policy) by using historical data generated by a potentially
different policy (i.e., behaviour policy). The ability to evaluate the

performance of a new policy without implementing it is critical,

particularly in scenarios where real-world experimentation is costly,

risky, or unethical. Such scenarios include precision medicine [27],

robotics [53], and recommendation systems [9].

In general, most OPEmethods assume the absence of unobserved

confounders that affect both actions and rewards, or both actions

and next states. This assumption is typically referred to as Uncon-
foundedness [4, 62]. However, in certain real-world applications,

this assumption may not hold and unobserved confounders can

introduce bias in OPE. For instance, in Figure 1, we illustrate the

task of evaluating a new treatment regimen for a patient with dia-

betes before prescribing it to patients. Doctors would like to first

assess the treatment regimen using past clinical records, which

include patient health status, prescribed anti-diabetic medications,

and blood glucose levels, rather than directly offering uncertain

advice that could potentially harm patients. The value of interest is

the long-run average deviation from ideal glucose levels. However,

there may be unrecorded events, such as the patient’s food intake

and exercise, that could simultaneously influence the patient’s med-

ication routine, blood glucose levels, and future health status. Such

unrecorded factors introduce bias and violate the Unconfounded-

ness assumption. Most existing OPE methods fail to account for

such unobserved confounders (see Section 2.1 for details). If these

methods are applied to evaluate the new treatment regimen with-

out considering unobserved confounders, it may result in biased

evaluations, which may lead to harmful treatment decisions.

Recently, there have been several attempts to apply causal in-

ference to OPE to address the issue of unobserved confounders

(see Section 2.2 for details). However, these efforts typically fo-

cus on OPE in a single-action setting (i.e., only one single action

is taken by an agent at each time step). They do not account for

the multi-action setting, which is commonly encountered in the

OPE literature [7, 69]. Consider the diabetes treatment example:

patients are often prescribed multiple anti-diabetic drugs simulta-

neously, such as Sulfonylureas, Biguanides, and/or DPP-4 inhibitors

[63]. The schedule of medication intake may be influenced by the

unmeasured diet and exercise of a patient. Furthermore, these ex-

isting methods for the single-action setting often rely on auxiliary

variables (e.g., instruments [35, 67], confounder proxies [4, 5]) to

achieve an unbiased evaluation of the target policy in the presence

of unobserved confounders. However, if one intends to simply ex-

tend these conventional auxiliary variables-based methods to the

multi-action setup, it introduces additional challenges. For instance,

the instrumental variable approach requires at least as many in-

strumental variables as the number of actions [45]; the confounder

proxy approach requires outcome-inducing proxies to be causally

uncorrelated with all actions [60]. In practical applications, identi-

fying valid auxiliary variables that meet the above requirements is

1
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Figure 1: A graphical representation of a proposed treatment
regimen for diabetes patients, where 𝐵𝑀𝐼 represents a pa-
tient’s body mass index (health status), 𝐷𝑟𝑢𝑔 represents the
drug administered, and 𝐵𝐺𝐿 represents the patient’s blood
glucose level. In this treatment plan, 𝑈𝑅 represents the un-
recorded food intake or exercise of the patient that affects
medication routine, fluctuations in blood glucose level, and
the patient’s body mass index the next day.

quite difficult. Therefore, it is necessary to develop a method that

not only fills the aforementioned gap in the multi-action setting but

also imposes less restrictive requirements on auxiliary variables.

In the causal inference area, a few studies have attempted to

address the problem of multi-treatment unmeasured confounding

currently [16, 26, 66]. These efforts, however, suffer from either the

absence of theoretical guarantees for identification or the require-

ment of an infinite number of treatments to mitigate confounding.

We note that Miao et al. [41] recently developed a novel auxiliary

variable method to address the bias introduced by multi-treatment

unmeasured confounding. This work establishes strict theoretical

guarantees for identification under a more general, though not

unrestricted treatment-confounder model, thus avoiding the afore-

mentioned drawbacks. Motivated by this work, we propose an

auxiliary variable-aided method for OPE in the multi-action set-

ting with unmeasured confounding. Unlike the traditional auxiliary

variable methods, our method does not require as many auxiliary

variables as there are actions, nor does it necessitate confounder

proxies that are unrelated to all actions; instead, a single auxil-

iary variable is sufficient to complete the identification of policy

value. This relaxation of the traditional assumption makes the ap-

proach more feasible in practical applications. While our method

is inspired by [41], it is important to note that adjusting for unob-

served confounders in the OPE setting is more complex than in the

static setting, as the confounder in the OPE setting may influence

both the immediate rewards and next states at each step, and the

state transition involved in OPE amplifies the difficulty of adjusting

the accumulated bias. Our contribution can be summarised as the

following:

• We propose an auxiliary variables based method for OPE in a

multi-action setting, which can achieve an unbiased estimation

of the target policy in the presence of unobserved confounders.

To the best of our knowledge, this is one of the first works on

off-policy evaluation in the multi-action setup with unobserved

confounders.

• Through comprehensive theoretical analysis, we demonstrate

that the proposed method provides an unbiased estimation

of the target policy value in the presence of unobserved con-

founders. Additionally, we develop a direct value estimator as

part of the proposed method.

• In simulation experiments and a treatment recommendation

example driven by a real OPE application, the proposed method

achieves better empirical performance compared to other base-

line methods, indicating its effectiveness and reliability. The

source code can be found at https://anonymous.4open.science/

r/multi-action-OPE-with-UC-E661.

2 Related Work
2.1 Off-policy Evaluation
Over the past several years, OPE has been extensively studied in

reinforcement learning (RL). Current OPE methods can be broadly

categorised into four types [33, 52, 62]. The first category is the

importance sampling (IS) based methods [11, 18–20, 56, 61]. This

type of method computes the ratio of the probabilities of trajectories

under the target policy to those under the behaviour policy and

use these ratios to adjust the observed rewards. One advantage of

IS methods is that they do not require modelling the dynamics of

the environment or estimating the reward function. However, they

are prone to high variance, especially in long-horizon tasks where

the product of probabilities can become very small or unstable. The

second category is the direct methods (DMs) [15, 31, 32, 36, 38, 57].

This type of methods directly estimate the Q-function or the value

function of a target policy from the historical data. DMs have lower

variance compared to IS, but their performance heavily depends on

the accuracy of the model used to estimate the Q-function or value

function. The third category is the doubly robust (DR)methods [14,

22, 59], which combines the strengths of both IS and DMs to achieve

a balance between bias and variance. This type of method uses IS

to account for discrepancies between the behaviour and target

policies, while relying on the DMs for value estimation. It retains

unbiasedness even when either the importance weights or the

value function estimates are imprecise, provided that at least one of

them is accurately estimated. Distinct from these three model-free

methods, the fourth category ismodel-based methods [12, 29, 65],

which focus on explicitly constructing a model of the environment’s

dynamics, such as the state transition function and reward function,

to estimate the value of a target policy. By modelling the underlying

environment, this type of method simulates trajectories under the

target policy, allowing for the evaluation of policy performance.

All of these methods implicitly rely on the Unconfoundedness

assumption, yet unobserved confounders are often unavoidable in

the real-world. Recently, several methods have been developed to

address this issue. In the next section, we review existing works

that focus on handling unobserved confounders in OPE.

2.2 OPE with unobserved confounders
To address the issue of unobserved confounders, researchers have

increasingly incorporated causal inference techniques with exist-

ing OPE methods to achieve unbiased policy evaluation. These

methods can be broadly categorised into two directions. The first

direction employs sensitivity analysis or relies on weak assump-

tions to develop identification bounds on the value of the target

policy [6, 23, 25, 44, 68]. However, these methods depend on specific

2
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Figure 2: Causal diagram for MMDPUC, where 𝑈𝑡 denotes
the unobserved confounders that may affect both 𝐴𝑡 and 𝑅𝑡 /
𝑆𝑡+1.

assumptions that may vary across different settings, potentially

leading to inconsistent results. The second direction utilises auxil-

iary variables from the observed data to adjust for bias introduced

by unobserved confounders, yielding unbiased estimates of the

target policy. The most commonly used auxiliary variables include

instrumental variables [35, 67], confounder proxies [4, 5]. The core

principle of these methods is to mitigate the confounding interfer-

ence in the causal relationship between treatment and outcome

by introducing variables that are either independent of the con-

founder but related to the outcome or that capture information

about the confounder. Consequently, the quality of the chosen aux-

iliary variables plays a critical role in determining the accuracy of

the evaluation.

However, the aforementioned approaches share a common lim-

itation: they focus exclusively on OPE in a single-action setting

with unobserved confounders, where the behaviour or target pol-

icy takes only one action at each time step. They do not address

scenarios where multiple actions are confounded. In addition, if

one were to simplify a multi-action problem as a multiple single-

action problem by treating it as a vector-valued action, applying

the method above directly to a multi-action scenario would impose

some additional requirements. For instance, in the instrumental

variable approach, the completeness assumption requires [45] that

the number of instrumental variables must match the number of

actions, with each instrument corresponding to a specific action.

In the case of confounder proxy methods, the outcome-inducing

proxies are required to be causally uncorrelated with all actions

[60]. These additional assumptions restrict the applicability of these

methods in real-world settings.

Recently, there have been a few attempts to identify the effects

of multiple treatments on outcomes in the presence of unobserved

confounders. Wang and Blei [66] were among the first to provide an

intuitive justification for addressing multi-treatment unmeasured

confounding. They utilized a factor model to estimate the con-

founder among multiple treatments and employed the confounder

estimate to adjust for bias. However, as discussed in these works

[21, 47], the effect of multiple treatments in this work cannot be

uniquely determined from observed data. Kong et al. [26] utilized

a linear factor model to address the confounding among multiple

treatments, but this approach is only applicable to binary outcomes

and cannot be generalized to more complex outcome models. Grim-

mer et al. [16] considered a linear outcome model with multiple

treatments that are confounded or mismeasured. However, this

approach requires an infinite number of treatments to guarantee

identification of the results. We note that Miao et al. [41] model

multiple treatments using factor models and achieve unique identi-

fication of multiple treatment effects by leveraging a small number

of auxiliary variables. Unlike the aforementioned methods, this

approach not only provides rigorous theoretical guarantees for

identification but also avoids limitations such as binary outcome

models and the requirement of infinite treatment numbers. Our

paper extends this theory to the context of multi-action policy

evaluation and provides unbiased estimation of the target policy’s

value.

3 Preliminaries
3.1 Data-Generating Process
We consider the observational data generated from a Markov Deci-

sion Process with multiple actions in the presence of unobserved

confounders (MMDPUC), which is a confounded generalization of

the Multi-action Markov Decision Process (MMDP) [64], as illus-

trated in Figure 2. A single trajectory under the MMDPUC is rep-

resented by a sequence of tuples (𝑆𝑡 , 𝐴𝑡 ,𝑈𝑡 , 𝑅𝑡 ) at the 𝑡-th step for

any 𝑡 ∈ T . Here, 𝑆𝑡 ∈ S denotes the state, 𝐴𝑡 = (𝐴𝑡,1, . . . , 𝐴𝑡,𝑑 ) ∈
A = (A1× . . .×A𝑑 ) is a vector of 𝑑 actions, and 𝑅𝑡 ∈ R represents

the immediate reward. The calligraphic letters represent the value

spaces of the corresponding variables. Let𝑈𝑡 denote the set of un-

observed confounders at step 𝑡 , which confounds the relationship

between 𝐴𝑡 and 𝑅𝑡 , as well as 𝐴𝑡 and 𝑆𝑡+1. For example, in the

context of diabetes treatment, 𝑆𝑡 corresponds to a patient’s body

mass index at step 𝑡 ,𝐴𝑡 refers to the administration of multiple anti-

diabetic drugs, 𝑅𝑡 represents blood glucose levels, and 𝑈𝑡 accounts

for unmeasured factors such as drug resistance of the patient.

We assume that each historical trajectory follows a common

behaviour policy, 𝜋𝑏 , which depends on unobserved confounders𝑈𝑡 .

The policy 𝜋𝑏 (𝐴𝑡,1, . . . , 𝐴𝑡,𝑑 |𝑆𝑡 ,𝑈𝑡 ) represents the probability of the
agent taking multiple actions given the state 𝑆𝑡 and confounders𝑈𝑡 ,

i.e., 𝜋𝑏 (𝑎𝑡,1, . . . , 𝑎𝑡,𝑑 |𝑠𝑡 , 𝑢𝑡 ) = 𝑝𝑎 (𝐴𝑡,1, . . . , 𝐴𝑡,𝑑 = 𝑎𝑡,1, . . . , 𝑎𝑡,𝑑 |𝑆𝑡 =
𝑠𝑡 ,𝑈𝑡 = 𝑢𝑡 ). The agent then receives a reward, 𝑅𝑡 ∼ 𝑝𝑟 (·|𝑆𝑡 , 𝐴𝑡 ,𝑈𝑡 ),
and transitions to the next state, 𝑆𝑡+1 ∼ 𝑝𝑠 (·|𝑆𝑡 , 𝐴𝑡 ,𝑈𝑡 ).

We also need to make some common assumptions as in Off-

Policy Evaluation (OPE) literature [43, 44, 54] for the above data-

generating process. Let 𝑎1:𝑡 = (𝑎1, 𝑎2, · · · , 𝑎𝑡 ) denote a sequence
of historical actions from time 1 to time 𝑡 . For any sequence of

actions 𝑎1:𝑡 , let 𝑅𝑡 (𝑎1:𝑡 ) and 𝑆𝑡+1 (𝑎1:𝑡 ) denote the potential im-

mediate reward and the potential next state, respectively, that
would be observed at time step 𝑡 if the agent had taken the se-

quence of actions 𝑎1:𝑡 up to that point. Let 𝐻𝑡 represent the set

of all possible histories, defined as 𝐻𝑡 := 𝐻𝑡 (𝑎1:𝑡−1) = (𝑆1, 𝐴1 =

𝑎1, 𝑅1 (𝑎1), 𝑆2 (𝑎1), · · · , 𝐴𝑡−1 = 𝑎𝑡−1, 𝑅𝑡−1 (𝑎1:𝑡−1), 𝑆𝑡 (𝑎1:𝑡−1)).
Based on this, we assume:

Assumption 1. For any step 𝑡 ∈ {1, . . . ,𝑇 },
i Consistency: When 𝐴1:𝑡 = 𝑎1:𝑡 , we have 𝑅𝑡 = 𝑅𝑡 (𝑎1:𝑡 ) and
𝑆𝑡+1 = 𝑆𝑡+1 (𝑎1:𝑡 ).

ii Sequential Ignorability: 𝑅𝑡 (𝑎1:𝑡 ) ⊥ 𝐴𝑡 | (𝐻𝑡 ,𝑈𝑡 ) and
𝑆𝑡+1 (𝑎1:𝑡 ) ⊥ 𝐴𝑡 | (𝐻𝑡 ,𝑈𝑡 ) for all 𝑎1:𝑡 .

iii Positivity (Overlap): 0 < 𝑝 (𝐴𝑡,1 = 𝑎𝑡,1, . . . , 𝐴𝑡,𝑑 = 𝑎𝑡,𝑑 |𝐻𝑡 ,𝑈𝑡 =

𝑢𝑡 ) < 1 for all 𝑎𝑡,1, . . . , 𝑎𝑡,𝑑 , 𝑢𝑡 .
3
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These are the common assumptions for ensuring unbiased OPE

in the presence of unobserved confounders [34, 46, 51]. Essentially,

the assumptions are a natural extension of the counterfactual or

potential outcomes framework [55] widely used in causal inference

to decision-making processes based on MDP. Consistency states

that the observed reward and next state are realizations of the

potential outcomes under the actions that were actually taken. Se-
quential ignorability posits that the actions taken are independent

of the potential outcomes, 𝑅𝑡 (𝑎1:𝑡 ) and 𝑆𝑡+1 (𝑎1:𝑡 ), conditional on
the historical data generated by the policy. This ensures that ac-

tion assignments are effectively randomized given the history and

implies that𝑈𝑡 suffices to control for all confounding at any time

step 𝑡 . Positivity, also known as "overlap," asserts that all actions

assigned have a positive probability of occurring given any history.

3.2 Problem Formulation
The complete data consist of N i.i.d. trajectories, given by

𝐷 = {(𝑆𝑖,𝑡 , 𝐴𝑖,𝑡 ,𝑈𝑖,𝑡 , 𝑅𝑖,𝑡 , 𝑆𝑖,𝑡+1)}𝑇𝑡=1, 𝑖 = {1, · · · , 𝑁 }, (1)

where𝑇 denotes termination time step for a single trajectory and all

trajectories have the same time step horizon. Note that the dataset

𝐷 is obtained by following the behaviour policy 𝜋𝑏 .

Let 𝜋𝑡 denote a deterministic policy to be evaluated (target pol-

icy). Under 𝜋𝑡 , at each time 𝑡 , the agent will set𝐴𝑡 = (𝑎𝑡,1, . . . , 𝑎𝑡,𝑑 )
with probability 𝜋𝑡 (𝑎𝑡,1, . . . , 𝑎𝑡,𝑑 |𝑆𝑡 ). We define the value function

𝑉 𝜋𝑡 (𝑆0) for the target policy as the expected cumulative reward

over a finite time horizon𝑇 , obtained by following the target policy

𝜋𝑡 starting from the initial state 𝑆0:

𝑉 𝜋𝑡 (𝑠0) =
1

𝑇

𝑇∑︁
𝑡=0

E𝜋𝑡 [𝑅𝑡 |𝑆0 = 𝑠0], (2)

where E𝜋𝑡 denotes the expectation of potential outcome of the

immediate reward 𝑅𝑡 under 𝜋𝑡 at time step 𝑡 .

Based on the data that can be observed in Equation 1, our objec-

tive is to evaluate the aggregated value:

𝜂𝜋𝑡 = E𝑆0∼𝜈 [𝑉
𝜋𝑡 (𝑆0)], (3)

where the expectation is taken with respect to 𝜈 , the distribution

over the initial state 𝑆0.

We note that we adopt an average reward formulation to address

the policy evaluation problem, which is well-suited to specific appli-

cations such as precision medicine or treatment recommendation.

Additionally, our approach can be easily extended to the discounted

reward setting (see A.2 in the Appendix).

3.3 Challenges of evaluating policy value
In this section, we discuss the challenges in evaluating the value

of the target policy in Equation 2 in the presence of unmeasured

confounders.

To begin with, we introduce the do-operator, do, to represent

an intervention [49]. In causal inference, 𝑑𝑜 (𝑋 = 𝑥) denotes one
exogenously intervenes on the variable 𝑋 , setting it explicitly to

𝑥 , rather than observing its natural occurrence at 𝑥 , without al-

tering the causal relationships among other variables in the sys-

tem. In the context of OPE, this corresponds to setting the action

value to (𝑎𝑡,1, . . . , 𝑎𝑡,𝑑 ) following the target policy while keeping

other functional mechanisms unchanged. For instance, the notation

𝑑𝑜 (𝐴𝑡 = 𝜋𝑡 (𝑠𝑡 )) means that the actions 𝐴𝑡 = (𝐴𝑡,1, . . . , 𝐴𝑡,𝑑 ) are
set to the value 𝜋𝑡 (𝑠𝑡 ) , where 𝜋𝑡 (𝑠𝑡 ) denote the actions that agent
takes after observing the state 𝑠𝑡 according to the policy 𝜋𝑡 . Note

that unlike the behavior policy 𝜋𝑏 , the target policy 𝜋𝑡 does not

depend on the unmeasured confounders 𝑈𝑡 . This is because the

do-operator removes all edges pointing to the intervention node,

except for the edge from 𝑆𝑡 to 𝐴𝑡 . In other words, any relationship

between𝑈𝑡 and 𝐴𝑡 during the data generation process is no longer

in effect once we perform the intervention.

Using the do-operator, the expectation of the immediate reward

at step 𝑡 can be expressed according to Markov property as:

E𝜋𝑡 [𝑅𝑡 |𝑆0 = 𝑠0]
=E[𝑅𝑡 |𝑑𝑜 (𝐴 𝑗,1 = 𝜋𝑡 (𝑠 𝑗 ), . . . , 𝐴 𝑗,𝑑 = 𝜋𝑡 (𝑠 𝑗 )),∀0 ≤ 𝑗 ≤ 𝑡, 𝑆0 = 𝑠0]
=E[E{𝑅𝑡 |𝑑𝑜 (𝐴𝑡,1 = 𝜋𝑡 (𝑠𝑡 ), . . . , 𝐴𝑡,𝑑 = 𝜋𝑡 (𝑠𝑡 )), 𝑆𝑡 ,𝑈𝑡 }|
𝑑𝑜 (𝐴 𝑗,1 = 𝜋𝑡 (𝑠 𝑗 ), . . . , 𝐴 𝑗,𝑑 = 𝜋𝑡 (𝑠 𝑗 )),∀0 ≤ 𝑗 < 𝑡, 𝑆0 = 𝑠0] .

If we were able to observe the confounder 𝑈𝑡 , Assumption 1

would allow for the identification ofE{𝑅𝑡 |𝑑𝑜 (𝐴𝑡,1 = 𝜋𝑡 (𝑠𝑡 ), . . . , 𝐴𝑡,𝑑 =

𝜋𝑡 (𝑠𝑡 )), 𝑆𝑡 ,𝑈𝑡 } using the back-door adjustment [48]:

E{𝑅𝑡 |𝑑𝑜 (𝐴𝑡,1 = 𝜋𝑡 (𝑠𝑡 ), . . . , 𝐴𝑡,𝑑 = 𝜋𝑡 (𝑠𝑡 )), 𝑆𝑡 ,𝑈𝑡 }

=
∑︁

𝑟𝑡 ,𝑠𝑡 ,𝑎𝑡,1,...,𝑎𝑡,𝑑 ,𝑢𝑡

𝑟𝑡𝑝𝑟 (𝑟𝑡 |𝑠𝑡 , 𝑎𝑡,1, . . . , 𝑎𝑡,𝑑 , 𝑢𝑡 )𝑝𝑠 (𝑠𝑡 )𝑝𝑢 (𝑢𝑡 ) . (4)

However, when𝑈𝑡 is not observed, all the information contained

in the observed data is captured by 𝑝 (𝑠𝑡 , 𝑎𝑡,1, . . . , 𝑎𝑡,𝑑 , 𝑟𝑡 ), from
which one cannot uniquely determine E{𝑅𝑡 |𝑑𝑜 (𝐴𝑡,1 = 𝜋𝑡 (𝑠𝑡 ), . . . ,
𝐴𝑡,𝑑 = 𝜋𝑡 (𝑠𝑡 )), 𝑆𝑡 ,𝑈𝑡 }. Similarly, the reward at the previous time

step 𝑗 , ∀0 ≤ 𝑗 < 𝑡 , cannot also be uniquely determined. Further-

more, as shown in the causal graph in Figure 2, 𝑆𝑡+1 and 𝑅𝑡 share
the same causal hierarchy, leading to a similar identification prob-

lem for the next state. Therefore, direct application of conventional

OPE methods, as discussed in Section 2.1, will result in a biased

evaluation of the target policy value in the presence of unmeasured

confounders.

4 Identification of policy value
In this section, we address the unbiased estimation of the target

policy value in the multi-action setup in the presence of unobserved

confounders using auxiliary variables. First, we introduce the rel-

evant assumptions regarding these auxiliary variables. Next, we

derive a formulaic expression for the value function 𝑉 𝜋𝑡 (𝑠0) with
the aid of auxiliary variables, which allows for unbiased estimation

of the target policy value given observed data even in the presence

of unobserved confounders. This result can serve as a basis for the

value estimator we proposed in Section 5.

4.1 The Auxiliary Variables Assumption
From Equation 4, we can infer that the lack of identification of

potential immediate reward is due to the unknown distribution

𝑝𝑟 (𝑟𝑡 |𝑠𝑡 , 𝑎𝑡,1, . . . , 𝑎𝑡,𝑑 , 𝑢𝑡 ) and 𝑝𝑢 (𝑢𝑡 ) distribution. For any possible

distributions 𝑝𝑟 and 𝑝𝑢 without imposing additional assumptions,

this would result in different potential rewards. Therefore, we intro-

duce auxiliary variables and impose extra assumptions to achieve

the unique identification of the above distribution.
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We assume that there exists a vector of observed auxiliary vari-

ables at each time step 𝑡 , which may consist of a single variable, de-

noted by 𝑍𝑡 in Figure 2. The observed data distribution at each time

step 𝑡 is captured by 𝑝 (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑧𝑡 ), from which we aim to identify

the potential reward distribution 𝑝𝑟 (𝑟𝑡 |𝑠𝑡 , 𝑎𝑡 , 𝑢𝑡 ) and the state tran-

sition distribution 𝑝𝑠 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , 𝑢𝑡 ). Given 𝑧𝑡 , we let 𝑝𝑠,𝑎,𝑢 (𝑠𝑡 , 𝑎𝑡 , 𝑢𝑡 |
𝑧𝑡 ) represent the state-action-confounder distribution, and 𝑝𝑠,𝑎 (𝑠𝑡 ,
𝑎𝑡 |𝑧𝑡 ) the marginalized distribution over 𝑢𝑡 . Let 𝑝𝑢 (𝑢𝑡 |𝑠𝑡 , 𝑎𝑡 , 𝑧𝑡 )
denote the confounder distribution conditional on 𝑠𝑡 , 𝑎𝑡 , and 𝑧𝑡 .

The auxiliary variables 𝑍𝑡 rest on the following assumption:

Assumption 2. For any step 𝑡 ∈ {1, . . . ,𝑇 },
i Exclusion restriction:𝑍𝑡 ⊥ 𝑅𝑡 | (𝐴𝑡 , 𝑆𝑡 ,𝑈𝑡 ),𝑍𝑡 ⊥ 𝑆𝑡+1 | (𝐴𝑡 , 𝑆𝑡 ,𝑈𝑡 ).
ii Equivalence: For any 𝑝𝑠,𝑎,𝑢 (𝑠𝑡 , 𝑎𝑡 , 𝑢𝑡 |𝑧𝑡 ) that solves 𝑝𝑠,𝑎 (𝑠𝑡 , 𝑎𝑡 |𝑧𝑡 )

=
∑
𝑢𝑡 𝑝𝑠,𝑎,𝑢 (𝑠𝑡 , 𝑎𝑡 , 𝑢𝑡 |𝑧𝑡 ) can be written as 𝑝𝑠,𝑎,𝑢 (𝑠𝑡 , 𝑎𝑡 , 𝑢𝑡 |𝑧𝑡 ) =

𝑝 (𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡 , 𝑔(𝑈𝑡 ) = 𝑢𝑡 |𝑧𝑡 ), where 𝑔 denotes any function
that is invertible but not necessarily to known.

iii Completeness: For any 𝑝𝑢 (𝑢𝑡 |𝑠𝑡 , 𝑎𝑡 , 𝑧𝑡 ), 𝑝𝑢 (𝑢𝑡 |𝑠𝑡 , 𝑎𝑡 , 𝑧𝑡 ) is com-
plete in 𝑧𝑡 , that is, for any fixed 𝑠𝑡 and 𝑎𝑡 , 𝐸 (ℎ(𝑈𝑡 ) |𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 =

𝑎𝑡 , 𝑍𝑡 ) = 0,∀𝑍𝑡 almost surely if and only if ℎ(𝑈𝑡 ) = 0 almost
surely, where ℎ is any family of function in 𝐿2.

The exclusion restriction implies that the auxiliary variables 𝑍𝑡
should only affect the reward 𝑅𝑡 and the next state 𝑆𝑡+1 indirectly
through the actions 𝐴𝑡 . This assumption rules out the existence of

directed edges from 𝑍𝑡 to 𝑅𝑡 and 𝑆𝑡+1 in Figure 2. It is analogous to

the exclusion restriction assumption in instrumental variables [3]

and treatment-inducing confounder proxies [40, 60].

Equivalence implies that the state-action-confounder distribu-

tion is based on a model identified by a one-to-one transformation

of 𝑈𝑡 , which restricts the class of state-action-confounder distri-

butions. Specifically, this assumption requires that the dimension

of the confounder 𝑈𝑡 be smaller than that of the actions 𝐴𝑡 . The

purpose of this restriction is to enable the use of factor models or

mixture models to describe the relationships between 𝑆𝑡 , 𝐴𝑡 , and

𝑈𝑡 . Identification results for factor or mixture models have been

widely applied in causal effect estimation [1, 30, 39, 66].

Completeness is a fundamental concept in causal inference and

statistical inference, primitive conditions are readily available in

some literature [2, 10, 45]. Here, it can be interpreted as the notion

that most of the information or randomness in the unmeasured

confounders𝑈𝑡 is captured by the variables (𝑆𝑡 , 𝐴𝑡 , 𝑍𝑡 ). Specifically,
the completeness assumption means that conditional on 𝑆𝑡 and 𝐴𝑡 ,

any variability in 𝑈𝑡 is reflected in the variability of 𝑍𝑡 , which is

analogous to the relevance condition in instrumental variable iden-

tification. This concept is easiest to understand when both𝑈𝑡 and

𝑍𝑡 are categorical, with dimensions 𝑑𝑢 and 𝑑𝑧 , respectively. In this

case, completeness requires that 𝑑𝑧 ≥ 𝑑𝑢 . In practice, completeness

is more plausible when practitioners measure a rich set of potential

auxiliary variables for confounding adjustment. Typically, when

the dimension of𝑈𝑡 is much smaller than that of 𝐴𝑡 , the dimension

of 𝑍𝑡 can also remain small.

4.2 Identification of policy value
In this section, we demonstrate that𝑉 𝜋𝑡 (𝑠0) can be estimated unbi-

asedly from the observed data even in the presence of unobserved

confounders, as shown in Theorem 4.1 below.

Theorem 4.1. Under Assumptions 1 - 2, 𝑉 𝜋𝑡 (𝑠0) equals

1

𝑇

𝑇∑︁
𝑡=0

∑︁
𝜏𝑡

𝑟𝑡 {
𝑡∏
𝑗=0

𝑝𝑠,𝑟 (𝑠 𝑗+1, 𝑟 𝑗 |𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 )𝑝𝑠,𝑎,𝑢 (𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 |𝑧 𝑗 )𝑝𝑧 (𝑧 𝑗 )},

where 𝜏𝑡 denote the historical data {(𝑠 𝑗 , 𝑧 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 )}𝑡𝑗=0 up to time 𝑡 .

Proof. See Appendix A.1. □

Remark 1. The main idea of the proof of Theorem 4.1 relies on

first applying the Markov property to decompose the identification

problem of the long-term cumulative reward into a sequence of

single-stage problems. Then, we iteratively apply the potential

outcomes framework (Assumption 1) and the conditions related to

auxiliary variables (Assumption 2) to estimate the potential reward

under the target policy using the observed data.

Remark 2. The key aspect of the identification process is to

uniquely determine the state transition distribution 𝑝𝑠 (𝑠 𝑗+1 |𝑠 𝑗 , 𝑎 𝑗 ,
𝑢 𝑗 ) and the reward distribution 𝑝𝑟 (𝑟 𝑗 |𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 ) from the observed

data. By leveraging auxiliary variables that satisfy Assumption 2,

we can achieve unique identification of these distributions. It is

important to note that, unlike the back-door adjustment, we do

not identify the true state transition and reward distributions but

instead obtain arbitrary distributions that satisfy Assumption 2 (iii).

Remark 3. Theorem 4.1 outlines three steps in the auxiliary vari-

able approach at each time step. First, we estimate the distribution

of each observed variable by using standard density estimation

techniques and the confounder distribution 𝑝𝑢 (𝑢 𝑗 |𝑠 𝑗 , 𝑎 𝑗 , 𝑧 𝑗 ) by us-

ing a standard factor model. Note that we do not identify the true

distribution 𝑝𝑢 , but some invertible transformation 𝑔(𝑈𝑡 ). Next, we
identify the state transition distribution 𝑝𝑠 (𝑠 𝑗+1 |𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 ) and the

reward distribution 𝑝𝑟 (𝑟 𝑗 |𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 ) by solving Equation 12 in the

Appendix. Finally, we integrate the distributions obtained in the first

two steps to estimate E{𝑅 𝑗 |𝑆 𝑗 , 𝑑𝑜 (𝐴 𝑗 = 𝜋𝑡 (𝑆 𝑗 )),𝑈 𝑗 }. All of these
distributions can be uniquely estimated from the observational

data, which implies the identifiability of 𝑉 𝜋𝑡 (𝑠0). Furthermore, 𝜂𝜋𝑡

is identifiable by taking the expectation with respect to the initial

state distribution 𝜈 .

Here, we provide an example of identifying a linear reward

function. Consider the following model: one confounder 𝑈𝑡 , one

auxiliary variable 𝑍𝑡 , one state 𝑆𝑡 , one 𝑑-dimensional actions are

generated as 𝐴𝑡 = 𝛼𝐴𝑈𝑡 +𝜂𝑍𝑡 + 𝜆𝐴𝑆𝑡 , and one reward generated as
𝑅𝑡 = 𝛼𝑅𝑈𝑡 + 𝛽𝑅𝐴𝑡 + 𝜆𝑅𝑆𝑡 , where 𝐴𝑡 = (𝐴𝑡,1, 𝐴𝑡,2, . . . , 𝐴𝑡,𝑑 )⊤ and

𝛼𝐴, 𝜂, 𝜆𝐴, 𝛽𝑅 are 𝑑-dimensional vectors of coefficients. In this case,

we are interested in obtaining an unbiased estimate of the reward

function 𝑅𝑡 based on the observed data.

We first estimate 𝜂 and
ˆ𝜆𝐴 by regressing 𝐴𝑡 on 𝑍𝑡 and 𝑆𝑡 . Then,

we obtain𝛾 by performing factor analysis on the residuals𝐴𝑡−𝜂𝑍𝑡−
ˆ𝜆𝐴𝑆𝑡 , where 𝛾 is defined as (Σ𝐴𝑡−𝜂𝑍𝑡−𝜆𝐴𝑆𝑡 )−1𝛼𝐴 = (𝛼𝐴𝛼⊤𝐴 )

−1𝛼𝐴 .
This corresponds to step 1, where the confounder distribution is

obtained using a linear factor model. We perform a regression of

𝑅𝑡 on 𝑍𝑡 , 𝐴𝑡 , and 𝑆𝑡 , with (𝜉𝑍𝑡 , 𝜉𝐴𝑡 , 𝜉𝑆𝑡 ) represent the coefficients,

obtaining to:

ˆ𝜉𝑍𝑡 = −𝛾𝛼𝑅𝜂,
ˆ𝜉𝐴𝑡 = 𝛾𝛼𝑅 + 𝛽𝑅,

ˆ𝜉𝑆𝑡 = 𝜆𝑅 − 𝛾𝛼𝑅
ˆ𝜆𝐴 .

(5)
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By solving Equation 5, we obtain estimates of the remaining

parameters ( ˆ𝛽𝑅, 𝛼𝑅, ˆ𝜆𝑅). This corresponds to step 2, where the co-

efficients of 𝑅𝑡 are determined by solving the linear equations,

thereby identifying the reward function. Finally, we estimate the

expected reward under the target policy based on the identified

reward function. The state transition function follows a similar

process and is not elaborated upon here.

5 Estimation
In this section, we demonstrate how to use the Q-function (DM

Estimator) to efficiently estimate 𝜂𝜋𝑡 . In the context of average

cumulative rewards, we define the Q-function as:

𝑄𝜋𝑡 (𝑠, 𝑎) = E𝜋𝑡 [𝑅𝑡 +𝑉 𝜋𝑡 (𝑆𝑡+1) |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎], (6)

where𝑅𝑡 denotes the immediate reward obtained after taking action

𝐴𝑡 in state 𝑆𝑡 , and 𝑉
𝜋𝑡 (𝑆𝑡+1) represents the value function at the

next state 𝑆𝑡+1 under the policy 𝜋𝑡 .

Removing the expectation and according to Bellman equation,

we obtain that

𝑄𝜋𝑡 (𝑠, 𝑎) =
∑︁
𝑟 ∈R

𝑝𝑟 (𝑟 |𝑠, 𝑎) · 𝑟+∑︁
𝑠′∈S

𝑝𝑠 (𝑠′ |𝑠, 𝑎)
∑︁
𝑎∗∈A

𝑝𝑎 (𝑎∗ |𝑠′)𝑄𝜋𝑡 (𝑠′, 𝑎∗),
(7)

where 𝑠′ denotes the next state, 𝑎∗ the actions taken under policy 𝜋𝑡 ,
and 𝑝𝑟 (𝑟 |𝑠, 𝑎) and 𝑝𝑠 (𝑠′ |𝑠, 𝑎) can be uniquely identified step by step

using historical data and auxiliary variables, as outlined in Theorem

4.1.𝑄𝜋𝑡 (𝑠′, 𝑎∗) represents the Q-function that follows the target pol-
icy in the next state. By aggregating the Q-function over the empir-

ical initial state distribution, we obtain 𝜂𝜋𝑡 = E𝑆0∼𝜈 [𝑄𝜋𝑡 (𝑆0, 𝐴0)].
We now turn to the estimation of𝑄𝜋𝑡 (𝑠, 𝑎). Motivated by [31], we

employ the Least-Squares Temporal Difference Q-learning (LSTD-

Q) method to iteratively solve for the Q-function. Specifically, we

begin by using a linear function approximation for the Q-function:

𝑄𝜋𝑡 (𝑠, 𝑎;𝜃 ) = 𝜙 (𝑠, 𝑎)⊤𝜃 , where 𝜙 (𝑠, 𝑎) represents the feature vector
and 𝜃 is the parameter vector. The temporal difference (TD) error

for the Q-function between the state-action pair (𝑠, 𝑎) under the
behaviour policy and the state-action pair (𝑠′, 𝑎∗) under the target
policy is given by 𝛿 = 𝑟 +𝜙 (𝑠′, 𝑎∗)⊤𝜃 −𝜙 (𝑠, 𝑎)⊤𝜃 . Using the LSTD-Q
method, the following update equation is obtained:

˜A(𝑡+1)
= ˜A(𝑡 ) + 𝜙 (𝑠, 𝑎)

(
𝜙 (𝑠, 𝑎) − 𝜙 (𝑠′, 𝑎∗)

)⊤
,

˜𝑏 (𝑡+1) = ˜𝑏 (𝑡 ) + 𝜙 (𝑠, 𝑎)𝑟,
(8)

where A denotes the sum of the covariance matrices for the state-

action pairs, and 𝑏 represents the accumulation of each state-action

pair, weighted by the corresponding immediate reward.

Finally, we update the parameter 𝜃 by solving the equation 𝜃 =

A−1𝑏. A more detailed derivation of the LSTD-Q method can be

found in [31].

6 Experiments
In this section, we evaluate the performance of the proposed estima-

tor through a simulation experiment and an experiment involving

autistic children based on a real OPE application.

Figure 3: Logarithmic relative MSE in the left half and loga-
rithmic relative absolute bias in the right half of the figure,
with sample size on the x-axis.

6.1 Simulations
We compare the proposed estimator with several baseline methods

using synthetic data.

Data generating process. We begin by describing the detailed

setup for the simulation. The observed data consists of 𝑁 = 1000

trajectories, each with 𝑇 = 50 time steps. The unobserved con-

founders {𝑈𝑡 }𝑇𝑡=1 are independently and identically distributed

(i.i.d.), sampled from a standard normal distribution N(0, 1). The
confounder proxy is generated as𝑊𝑡 = 2𝑈𝑡 . At each time step

𝑡 , six actions, 𝐴𝑡 = (𝐴𝑡,1, 𝐴𝑡,2, . . . , 𝐴𝑡,6), are assigned according

to the behaviour policy, which satisfies 𝐴𝑡,𝑖 = 𝑍𝑡,𝑖 + 𝑆𝑡 + 𝑈𝑡 for

𝑖 ∈ 1, 2, . . . , 6. Here, 𝑍𝑡 = (𝑍𝑡,1, 𝑍𝑡,2, . . . , 𝑍𝑡,6) denotes six instru-

mental variables, drawn from a 6-dimensional multivariate nor-

mal distribution 𝑍𝑡 ∼ N(0, I6), corresponding to each of the six

actions. One of these variables is taken as the auxiliary variable.

The reward function and state transition function are defined as:

𝑅𝑡 =
∑
6

𝑖=1𝐴𝑡,𝑖 + 𝑆𝑡 + 2.5𝑈𝑡 , and 𝑆𝑡+1 = (∑6

𝑖=1𝐴𝑡,𝑖 + 𝑆𝑡 )/10 + 5𝑈𝑡 .

The initial state 𝑆0 is also sampled from N(0, 1).
Compared methods. We consider four baseline estimators.

The first is a direct method (DM) that ignores the presence of con-

founders, where the Q-function is used directly to estimate the

target policy. The second approach combines the Q-function with

instrumental variables (DM_IVs) [42]. Based on the completeness

assumption of instrumental variables [45], this method requires

as many instrumental variables as there are actions, specifically,

𝑍𝑡 = (𝑍𝑡,1, 𝑍𝑡,2, . . . , 𝑍𝑡,6). To ensure fairness, the third approach

(DM_oneIV) uses only one instrumental variable from 𝑍𝑡 in the

Q-function, aligning with the number of auxiliary variables re-

quired by our proposed estimator. The fourth approach combines Q-

functions with confounder proxies (DM_Pxy) [40, 60].We use one of

𝑍𝑡 and𝑊𝑡 as treatment- and outcome-inducing confounder proxies,

respectively. Given the target policy, which takes six actions, with

all values set to 1 at each time step, i.e., 𝐴𝑡
𝑇
𝑡=1

= (1, 1, 1, 1, 1, 1)𝑇𝑡=1,
we use the above estimators to evaluate it.

Results.We use logarithmic relative MSE (logMSE) and logarith-

mic relative absolute bias (logBias) as evaluation metrics, with the

ground truth being 𝜂𝜋𝑡 obtained by following the target policy in

the unconfounded MDP. Each experiment was repeated 100 times
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(a) The treatment effect size is 0.2. (b) The treatment effect size is 0.5. (c) The treatment effect size is 0.8.

(d) The treatment effect size is 0.2. (e) The treatment effect size is 0.5. (f) The treatment effect size is 0.8.

Figure 4: Evaluation results of autistic children simulation with different treatment effect sizes under different sample sizes
(The strengths of the confounding 𝛾 = 1). The x-axis represents the number of weeks, indicating the progression of time during
the treatment or intervention period. The y-axis denotes the mean count of verbal expressions made by children with autism
throughout the course of the treatment. The top row represents a sample size of 100, and the bottom row represents a sample
size of 1000.

across different numbers of trajectories. Figure 3 summarizes the

bias of these estimators. Our proposed estimator (DM_Aux) per-

forms well, achieving the smallest logMSE and logBias compared

to the baseline methods. In contrast, DM_oneIV produces outlier

values due to the incorrect number of instrumental variables, high-

lighting potential issues with the estimator’s robustness or stability

when there are insufficient instrumental variables. Our estimator

effectively addresses this issue.

Additionally, we find that the traditional IV-based estimator

(DM_IVs) and the confounder proxy-based estimator (DM_Pxy)

experience increases in logMSE and logBias as the number of trajec-

tories decreases, which aligns with the asymptotic properties of IV

and proxy methods [17, 58, 60]. This demonstrates the limitations

of IV- or proxy-based estimators with small sample sizes, whereas

our proposed method performs better in such cases. Furthermore,

the DM estimator suffers from significant bias in its estimates, as it

does not account for the presence of unobserved confounders.

6.2 Autism example
In this section, we apply our method to a treatment recommenda-

tion example: communication interventions for minimally verbal

children with autism. Minimally verbal children makeup 25-30% of

those with autism and often have a poor prognosis in terms of social

functioning. Using a simulator for autistic children developed by

Lu et al. [37], which models data from a Sequential Multiple Assign-

ment Randomized Trial (SMART) [24], we evaluated the treatment

effects (measured by the number of socially communicative utter-

ances) under different treatment regimes (target policies).

Overview. In the autism SMART trial, there are two therapeutic

interventions (multiple actions): a therapist’s behavioural language

intervention (BLI) and a device for augmented/alternative commu-

nication (AAC). We consider treatment provider preferences, such

as the conversation content of BLI and the device assignment of

AAC determined by clinicians, as instrumental or auxiliary vari-

ables [13, 44]. Actions are taken at weeks 12, 24, and 36 (𝑇 = 2, 3, 4),

and the number of speech utterances is measured in weeks 24 and

36 (𝑇 = 3, 4). The average number of speech utterances among

autistic children serves as the reward or outcome. In the original

study [37], two treatment policies were evaluated (listed in Table 1

of the original article). However, there may be slight confounding

due to unrecorded patient information, such as the foundational

cognitive abilities of the patients.

Real data collection. Following Lu et al. [37], the data genera-

tion process in the autistic children experiment is based on a sample

of 300 individuals from Kasari et al. [24]. Each patient is charac-

terized by six covariates: age, gender, and indicators for African

American, Caucasian, Hispanic, and Asian. To obtain a sample size

of 𝑁 , we sample with replacement from this set.

Actions and target policy. In the autism SMART trial, two

actions are available at weeks 24 and 36 (𝑇 = 3, 4): 𝐴1 ∈ {−1, 1}
and 𝐴2 ∈ {−1, 1}. Here, 𝑎1 = 1 denotes BLI, while 𝑎1 = −1 denotes
BLI+AAC. Similarly, 𝑎2 = 1 represents assigning intensified BLI,

and 𝑎2 = −1 represents assigning BLI+AAC. Although 𝐴1 and 𝐴2

are two-stage treatments in the original study, we treat these as

multiple actions assigned at week 24 and week 36, based on the

outcome equation 9. Additionally, we focus on children with slow
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Figure 5: Evaluation results of autistic children simulation with different strengths of the confounding under sample size of
1000 (The treatment effect sizes are all set to 0.95).

responses to ensure multiple treatments are administered, i.e., 𝑅 is

always equal to 0 in the outcome equation 9. Further details can be

found in the original work [37].

There are two different target policies to evaluate. Policy I: using

AAC from the beginning (BLI+AAC, ·). Policy II: deferring the use

of AAC (BLI, BLI+AAC).

Confounding. The original simulator did not include unob-

served confounders. Here, we describe how confounding is intro-

duced in this setting.

Lu et al. [37] gives the effect of two treatments on the reward

outcome 𝑌24 and 𝑌36 as follows:

𝑌24 = 𝜂𝑇
21
𝑋 + 𝜂22𝑌0 + 𝜂𝑇23𝐴1

+ 𝜂24𝑌12 + 𝛽21 (1 − 𝑅) (𝐴1 + 1)𝐴2 + 𝜖2

𝑌36 = 𝜂𝑇
31
𝑋 + 𝜂32𝑌0 + 𝜂𝑇33𝐴1

+ 𝜂34𝑌12 + 𝛽31 (1 − 𝑅) (𝐴1 + 1)𝐴2 + 𝜖3

(9)

where 𝜂23, 𝛽21 and 𝜂33, 𝛽31 can be regarded as effect size of two

treatments on 𝑌24 and 𝑌36, respectively.

In the original setting, the authors generated four treatment ef-

fects with different numerical sizes (Figure 7 of the original text).We

give evaluation results for different treatment effect sizes (exclud-

ing effect size of 0) in the presence of unobserved confounders, as

shown in Figure 4. The definitions and specific values of remaining

parameters in this simulation are reported by [37].

We introduce confounding by adding𝑈 that follows the discrete

uniform distribution, to the outcome model, i.e. Equation 9, respec-

tively. This is because some of the baseline methods (IVs) require

additional assumptions, such as an additive outcome model, which

does not allow treatment and confounder to have an interaction,

i.e., 𝐸 (𝑌 |𝑢, 𝑥) = 𝑚(𝑥) + 𝑢 [45]. Our method is not subject to this

restriction [41]. More precisely, we randomly assign𝑈 to either 𝛾

or −𝛾 for each individual, where 𝛾 controls the strength of the con-

founding effect. We also show the evaluation results for two target

policies under different strengths of the confounding, as shown in

Figure 5.

Behaviour Policy andAuxiliary Variable In the original work
[37], two actions 𝐴1, 𝐴2 are taken according to a random policy,

i.e. 𝑃 (𝐴1 = −1) = 𝑃 (𝐴1 = 1) = 0.5 and 𝑃 (𝐴2 = −1) = 𝑃 (𝐴2 =

1) = 0.5. In our experiments, we specify that two actions are taken

according to the behaviour policy 𝐴1 ∼ 𝜋𝑏 (𝑍1,𝑈 ) = 𝑍1 +𝑈 + 𝜖 and
𝐴2 ∼ 𝜋𝑏 (𝑍2,𝑈 ) = 𝑍2 +𝑈 +𝜖 , where 𝑍1 and 𝑍2 denote instrumental

variables or auxiliary variables. Here, the practical significance of

𝑍1 is the content of the conversation prescribed by the clinician,

and 𝑍2 is the assignment of devices decided by the clinician.

Results The results of the estimation for the two target policies

are reported in Figure 4-5. Each set of experiments was repeated 100

times. Compared to other estimators, our estimator yields estimates

that more closely align with the ground truth curve under various

parameter settings, demonstrating it can effectively handle the bias

introduced by unobserved confounders. Moreover, in the control

group with a smaller sample size, our proposed estimator delivers

more accurate estimates, while other baseline methods yield results

even worse than DM, which does not account for confounders.

This highlights the advantage of our approach, particularly in set-

tings with limited sample sizes. Although our method may slightly

underperform compared to some idealized approaches in a few

specific parameter settings, it requires significantly fewer auxiliary

variables. This makes our estimator more feasible to implement

in real-world scenarios, highlighting its practical applicability and

potential for broader adoption.

7 Conclusion
In this paper, we present a systematic approach to evaluate off-

policy using auxiliary variables in the presence of unobserved con-

founders in multi-action scenarios. Our approach overcomes the

limitations of traditional auxiliary variablemethods formulti-action

scenarios by requiring only a single auxiliary variable, relaxing the

need for as many auxiliary variables as the actions. The experimen-

tal results in simulation and examples of autistic children demon-

strate the effectiveness of our proposed approach. To the best of

our knowledge, this is the first work to address the presence of an

unobserved confounder in offline multi-action policy evaluation.

The estimator of the direct method relies on the correct specifica-

tion of the Q-function. If the Q-function is misspecified, the results

of the evaluation may be affected. This leads to several potential

future works that could build on this paper: One possibility is to

extend the direct method to the doubly robust technique in OPE,

drawing on the strengths of two or more estimators to overcome

the problem of misspecified Q-functions. Another option is to make

use of deep neural networks, such as deep Q-learning, which can

be an effective way to avoid specifying Q-function in the face of

unknown, complex data generation processes.
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A Appendix
This is the Appendix for “Off-policy Evaluation for Multiple Actions

in the Presence of Unobserved Confounders".

A.1 Proof of Theorem 1
Theorem 4.1 states the identifiability of the value function, i.e.

𝑉 𝜋𝑡 (𝑠0) can be unbiasedly estimated from the observed data even

in the presence of unobserved confounders.

As can be seen from Equation 2, the solution of the value function

is an iterative process, which suffices to identify the immediate

reward 𝐸𝜋𝑡 [𝑅𝑡 |𝑆0 = 𝑠0] at each time step 𝑡 . Therefore, according to

Assumption 1, Equation 2 can be further decomposed as

𝐸𝜋𝑡 [𝑅𝑡 |𝑆0 = 𝑠0] =
∑︁
𝑠0∈S

∑︁
𝑠1∈S

· · ·
∑︁
𝑠𝑡 ∈S

𝑅𝑡 ·

P(𝑅𝑡 |𝑑𝑜 (𝐴𝑡 = 𝜋 (𝑠𝑡 )), 𝑆𝑡 = 𝑠𝑡 ,𝑈𝑡 = 𝑢𝑡 )·
P(𝑆𝑡 |𝑑𝑜 (𝐴𝑡−1 = 𝜋 (𝑠𝑡−1)), 𝑆𝑡−1 = 𝑠𝑡−1,𝑈𝑡−1 =

𝑢𝑡−1) · · · P(𝑆1 |𝑑𝑜 (𝐴0 = 𝜋 (𝑠0)), 𝑆0 = 𝑠0,𝑈0 = 𝑢0)
(10)

where 𝑑𝑜 (𝐴 𝑗 = 𝜋 (𝑠 𝑗 )) = 𝑑𝑜 (𝐴 𝑗,1 = 𝜋𝑡 (𝑠 𝑗 ), . . . , 𝐴 𝑗,𝑑 = 𝜋𝑡 (𝑠 𝑗 )), 0 ≤
𝑗 ≤ 𝑡 denotes the actions taken under the target policy 𝜋𝑡 for any

𝑡 ∈ [𝑇 ].
According to 10, the identification procedure of 𝑉 𝜋𝑡 (𝑠0) can be

conducted stage-by-stage. In the following, we will identify each

term on the right-hand side of Equation 10 in three steps.

Step 1. Identifiability of P(𝑆 𝑗 = 𝑠 𝑗 |𝑑𝑜 (𝐴 𝑗−1 = 𝜋 (𝑠 𝑗−1)), 𝑆 𝑗−1 =

𝑠 𝑗−1,𝑈 𝑗−1 = 𝑢 𝑗−1),∀1 ≤ 𝑗 ≤ 𝑡 .

According to the back-door adjustment [48], the potential state

distribution is identified by

P(𝑆 𝑗 = 𝑠 𝑗 |𝑑𝑜 (𝐴 𝑗−1 = 𝜋 (𝑠 𝑗−1)), 𝑆 𝑗−1 = 𝑠 𝑗−1,𝑈 𝑗−1 = 𝑢 𝑗−1)

=
∑︁
𝑠 𝑗−1

∑︁
𝑢 𝑗−1

𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1)𝑝 (𝑠 𝑗−1)𝑝 (𝑢 𝑗−1). (11)

Here, the state transition distribution 𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1) and
the product of the probability distributions of 𝑝 (𝑠 𝑗−1) and 𝑝 (𝑢 𝑗−1)
need to be identified separately.

We first identify the state transition distribution 𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1,
𝑢 𝑗−1) by equation

𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1)

=
∑︁
𝑢 𝑗−1

𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1)𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1). (12)

(See Equations 13 - 16 for derivation of Equation 12), where 𝑝 (𝑠 𝑗
|𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) is the distribution function for the observable

random vector (𝑠 𝑗 , 𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1), which can be estimated para-

metrically or non-parametrically using standard density estimation

techniques. Examples include parameter estimation to describe

observed variables whose distribution form is known, or density

estimation based directly on observed variables without assum-

ing the distribution form; 𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) is the distribu-
tion of 𝑢 𝑗−1 given 𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1. This step needs Assumption

2 ii. To estimate this distribution, we need to correctly specify a

state-actions-confounder model that meets Assumption 2 (ii), such

as a factor model. Under a standard factor model, estimation of

𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) is well established. There is extensive liter-
ature on the estimation technique available here [1] [66]. By solving
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Equation 12, we obtain the unique solution for the state transition

function 𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1) (See Remark 4. for the reason). No-

tably, this process does not require observing the variable 𝑢 𝑗−1;
the identification can be achieved solely based on other observable

variables.

The challenging part of this step is the right-hand side of Equa-

tion 12, solving the integral equation, which usually has no closed-

form solution. This kind of equation is the form of Fredholm integral

equations of the first kind [28] and is known to be ill-posed due

to the noncontinuity of the solution. The numerical solution of

such equations is an active field of research in mathematics and

statistics, and goes beyond the scope of this discussion. However,

we note that [8] and [41] provide a consistent estimator of certain

parametric models under mild conditions, obviating the need to

solve integral equation (See these two works for more details and

proof).

The following part shows the derivation of Equation 12. Con-

sider the joint distribution 𝑝 (𝑠 𝑗 , 𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1, 𝑢 𝑗−1), according
to Bayes’ law, we decompose this distribution recursively as

𝑝 (𝑠 𝑗 , 𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1, 𝑢 𝑗−1)
=𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1, 𝑢 𝑗−1)𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1, 𝑢 𝑗−1)
=𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1, 𝑢 𝑗−1)𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1)·
𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) .

(13)

Moving 𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) to the left-hand side, the joint distri-

bution of 𝑠 𝑗 and 𝑢 𝑗−1 can be derived as

𝑝 (𝑠 𝑗 , 𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1)
=𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1, 𝑢 𝑗−1)𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) .

(14)

According Assumption 2 i, the equation can be written as

𝑝 (𝑠 𝑗 , 𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1)
=𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1)𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) .

(15)

To obtain 𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1), we perform marginalization

over 𝑢 𝑗−1 with respect to Equation 15:

𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) =
∑︁
𝑢 𝑗−1

𝑝 (𝑠 𝑗 , 𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1)

=
∑︁
𝑢 𝑗−1

𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1)𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) .
(16)

Next, we identify the product of the probability distributions of

𝑝 (𝑠 𝑗−1) and 𝑝 (𝑢 𝑗−1) in Equation 11. We again use Bayes’ Law for

the joint distribution 𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1, 𝑢 𝑗−1) to obtain Equation 17,
and thenmarginalize over𝑎 𝑗−1 and 𝑧 𝑗−1 for 𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1, 𝑢 𝑗−1)
to obtain Equation 18:

𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1, 𝑧 𝑗−1) = 𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1 |𝑧 𝑗−1)𝑝 (𝑧 𝑗−1), (17)

𝑝 (𝑠 𝑗−1, 𝑢 𝑗−1) =
∑︁
𝑧 𝑗−1

∑︁
𝑎 𝑗−1

𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1, 𝑧 𝑗−1) . (18)

Solve them simultaneously to obtain:

𝑝 (𝑠 𝑗−1, 𝑢 𝑗−1) =
∑︁
𝑧 𝑗−1

∑︁
𝑎 𝑗−1

𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1 |𝑧 𝑗−1)𝑝 (𝑧 𝑗−1). (19)

Here, the nodes of 𝑆 𝑗−1 and𝑈 𝑗−1 satisfy the Collider structure
[50] (See Figure 2) and are independent when the variables 𝐴 𝑗−1,
𝑅 𝑗−1, and 𝑆 𝑗 are not given [50]. Thus, the joint distribution of 𝑠 𝑗−1

and 𝑢 𝑗−1 can be written as a product of their respective marginal

distributions:

𝑝 (𝑠 𝑗−1)𝑝 (𝑢 𝑗−1) =
∑︁
𝑧 𝑗−1

∑︁
𝑎 𝑗−1

𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1 |𝑧 𝑗−1)𝑝 (𝑧 𝑗−1). (20)

Analogously to the identification of 𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) from
Equation 12, Assumption 2 ii and iii restrict the state-actions-confounder

distribution 𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1 |𝑧 𝑗−1), which allows that 𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1,
𝑢 𝑗−1 |𝑧 𝑗−1) to be determined by a factor model.

Substituting Equation 20 into Equation 11, the identification

result of P(𝑆 𝑗 = 𝑠 𝑗 |𝑑𝑜 (𝐴 𝑗−1 = 𝜋 (𝑠 𝑗−1)), 𝑆 𝑗−1 = 𝑠 𝑗−1,𝑈 𝑗−1 =

𝑢 𝑗−1),∀1 ≤ 𝑗 ≤ 𝑡 is given by

P(𝑆 𝑗 = 𝑠 𝑗 |𝑑𝑜 (𝐴 𝑗−1 = 𝜋 (𝑠 𝑗−1)), 𝑆 𝑗−1 = 𝑠 𝑗−1,𝑈 𝑗−1 = 𝑢 𝑗−1)

=
∑︁

𝑧 𝑗−1,𝑠 𝑗−1,𝑎 𝑗−1,𝑢 𝑗−1

𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1)𝑝 (𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1 |𝑧 𝑗−1)·

𝑝 (𝑧 𝑗−1).
(21)

Equation 21 can be considered as the identification process in a

single time step, in which all probability functions can be identified

consistently based on the observed data.

Step 2. Identifiability of P(𝑅𝑡 = 𝑟𝑡 |𝑑𝑜 (𝐴𝑡 = 𝜋 (𝑠𝑡 )), 𝑆𝑡 = 𝑠𝑡 ,𝑈𝑡 =

𝑢𝑡 ).
As shown in the causal graph in Figure 2, 𝑅𝑡 and 𝑆𝑡+1 have

the same causal hierarchy. Thus, The identification of P(𝑅𝑡 =

𝑟𝑡 |𝑑𝑜 (𝐴𝑡 = 𝜋 (𝑠𝑡 )), 𝑆𝑡 = 𝑠𝑡 ,𝑈𝑡 = 𝑢𝑡 ) can be easily written as

P(𝑅𝑡 = 𝑟𝑡 |𝑑𝑜 (𝐴𝑡 = 𝜋 (𝑠𝑡 )), 𝑆𝑡 = 𝑠𝑡 ,𝑈𝑡 = 𝑢𝑡 )

=
∑︁

𝑧𝑡 ,𝑠𝑡 ,𝑎𝑡 ,𝑢𝑡

𝑝 (𝑟𝑡 |𝑠𝑡 , 𝑎𝑡 , 𝑢𝑡 )𝑝 (𝑠𝑡 , 𝑎𝑡 , 𝑢𝑡 |𝑧𝑡 )𝑝 (𝑧𝑡 ) . (22)

Step 3. Repeating Step 1. from 𝑗 = 0 to 𝑗 = 𝑡 , we can obtain the

expectation of potential reward at step 𝑡

𝐸𝜋𝑡 [𝑅𝑡 |𝑆0 = 𝑠0] =
∑︁

{𝑧 𝑗 ,𝑎 𝑗 ,𝑢 𝑗 ,𝑟 𝑗 ,𝑠 𝑗+1 }𝑡𝑗=0

𝑟𝑡 ·

{
𝑡∏
𝑗=0

𝑝𝑠,𝑟 (𝑠 𝑗+1, 𝑟 𝑗 |𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 ) · 𝑝𝑠,𝑎,𝑢 (𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 |𝑧 𝑗 ) · 𝑝𝑧 (𝑧 𝑗 )}.
(23)

Therefore, the value function 𝑉 𝜋𝑡 (𝑠0) can be written as

𝑉 𝜋𝑡 (𝑠0) =
1

𝑇

𝑇∑︁
𝑡=0

𝐸𝜋 [𝑅𝑡 |𝑆0 = 𝑠0] =
1

𝑇

𝑇∑︁
𝑡=0

∑︁
{𝑧 𝑗 ,𝑎 𝑗 ,𝑢 𝑗 ,𝑟 𝑗 ,𝑠 𝑗+1 }𝑡𝑗=0

𝑟𝑡 ·

{
𝑡∏
𝑗=0

𝑝𝑠,𝑟 (𝑠 𝑗+1, 𝑟 𝑗 |𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 ) · 𝑝𝑠,𝑎,𝑢 (𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 |𝑧 𝑗 ) · 𝑝𝑧 (𝑧 𝑗 )}.

(24)

Furthermore, the identification result of 𝜂𝜋𝑡 can be obtained by

taking the expectation of 𝑉 𝜋𝑡 (𝑠0) on the initial state distribution

𝜈 (𝑠0), which is given by

𝜂𝜋𝑡 =
∑︁
𝑠0

[ 1
𝑇

𝑇∑︁
𝑡=0

∑︁
{𝑧 𝑗 ,𝑎 𝑗 ,𝑢 𝑗 ,𝑟 𝑗 ,𝑠 𝑗+1 }𝑡𝑗=0

𝑟𝑡 ·

{
𝑡∏
𝑗=0

𝑝𝑠,𝑟 (𝑠 𝑗+1, 𝑟 𝑗 |𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 ) · 𝑝𝑠,𝑎,𝑢 (𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 |𝑧 𝑗 ) · 𝑝𝑧 (𝑧 𝑗 )}]𝜈 (𝑠0) .

(25)

The proof is thus completed.
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We say that 𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1) is uniquely determined from

Equation 12. This is because 𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) is complete

in 𝑧 𝑗−1 under Assumption 2 (iii). If there is more than one can-

didate solution for Equation 12, e.g., 𝑝∗
1
(𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1) and

𝑝∗
2
(𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1), such that

∑
𝑢 𝑗−1 {𝑝

∗
1
(𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1) −

𝑝∗
2
(𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1)}𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) is not equal to 0,

this violates the completeness of 𝑝 (𝑢 𝑗−1 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑧 𝑗−1) in 𝑧 𝑗−1.
Therefore, 𝑝 (𝑠 𝑗 |𝑠 𝑗−1, 𝑎 𝑗−1, 𝑢 𝑗−1) is uniquely determined from Equa-

tion 12, and P(𝑆 𝑗 = 𝑠 𝑗 |𝑑𝑜 (𝐴 𝑗−1 = 𝜋 (𝑠 𝑗−1)), 𝑆 𝑗−1 = 𝑠 𝑗−1,𝑈 𝑗−1 =

𝑢 𝑗−1) is identified by plugging it into 21.

A.2 Discounted Cumulative Reward
We extend our proposal to the setting of discounted cumulative

rewards in this section.

Given a discount factor 0 ≤ 𝛾 < 1, the value function 𝑉 𝜋𝑡 (𝑠0)
is defined as the expected sum of rewards, each weighted by a

discount factor, starting from an initial state under a target policy:

𝑉 𝜋𝑡 (𝑠0) =
𝑇∑︁
𝑡=0

𝛾𝑡E𝜋𝑡 [𝑅𝑡 |𝑆0 = 𝑠0] . (26)

Referring to the identification process A.1 under the average

reward setting, we can easily obtain the identification results under

the discounted reward setting:

𝑉 𝜋𝑡 (𝑠0)

=

𝑇∑︁
𝑡=0

∑︁
𝜏𝑡

𝛾𝑡𝑟𝑡 {
𝑡∏
𝑗=0

𝑝𝑠,𝑟 (𝑠 𝑗+1, 𝑟 𝑗 |𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 )𝑝𝑠,𝑎,𝑢 (𝑠 𝑗 , 𝑎 𝑗 , 𝑢 𝑗 |𝑧 𝑗 )𝑝𝑧 (𝑧 𝑗 )}

(27)

We extend the direct method to the policy value estimator under

discounted reward setting, the Q-function is defined as:

𝑄𝜋𝑡 (𝑠, 𝑎) = E𝜋𝑡 [𝑅𝑡 + 𝛾𝑉 𝜋𝑡 (𝑆𝑡+1) |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎], (28)

We then expand it according to the Bellman equation:

𝑄𝜋𝑡 (𝑠, 𝑎) =
∑︁
𝑟 ∈R

𝑝𝑟 (𝑟 |𝑠, 𝑎) · 𝑟+

𝛾
∑︁
𝑠′∈S

𝑝𝑠 (𝑠′ |𝑠, 𝑎)
∑︁
𝑎∗∈A

𝑝𝑎 (𝑎∗ |𝑠′)𝑄𝜋𝑡 (𝑠′, 𝑎∗),
(29)

where the identification of 𝑝𝑟 (𝑟 |𝑠, 𝑎) and 𝑝𝑠 (𝑠′ |𝑠, 𝑎) are consistent
with those in the main paper.

We next discuss the estimating procedures of 𝑄𝜋𝑡 (𝑠, 𝑎) using
LSTD-Q method [31]. The TD error of the Q-function in the dis-

counted reward setting is given by 𝛿 = 𝑟 +𝛾𝜙 (𝑠′, 𝑎∗)⊤𝜃 −𝜙 (𝑠, 𝑎)⊤𝜃 .
The update equation can be rewritten as

˜A(𝑡+1)
= ˜A(𝑡 ) + 𝜙 (𝑠, 𝑎)

(
𝜙 (𝑠, 𝑎) − 𝛾𝜙 (𝑠′, 𝑎∗)

)⊤
,

˜𝑏 (𝑡+1) = ˜𝑏 (𝑡 ) + 𝜙 (𝑠, 𝑎)𝑟 .
(30)
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