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Abstract

Causal inference from longitudinal observational data is a
challenging problem due to the difficulty in correctly identi-
fying the time-dependent confounders, especially in the pres-
ence of latent time-dependent confounders. Instrumental vari-
able (IV) is a powerful tool for addressing the latent con-
founders issue, but the traditional IV technique cannot deal
with latent time-dependent confounders in longitudinal stud-
ies. In this work, we propose a novel Time-dependent In-
strumental Factor Model (TIFM) for time-varying causal ef-
fect estimation from data with latent time-dependent con-
founders. At each time-step, the proposed TIFM method em-
ploys the Recurrent Neural Network (RNN) architecture to
infer latent IV, and then uses the inferred latent IV factor for
addressing the confounding bias caused by the latent time-
dependent confounders. We provide a theoretical analysis for
the proposed TIFM method regarding causal effect estima-
tion in longitudinal data. Extensive evaluation with synthetic
datasets demonstrates the effectiveness of TIFM in address-
ing causal effect estimation over time. We further apply TIFM
to a climate dataset to showcase the potential of the proposed
method in tackling real-world problems.

Introduction
Causal effect estimation based on observational data plays a
crucial role in understanding the underlying causal mech-
anism of a system in various areas, e.g., in epidemiol-
ogy, econometrics, clinical decision-making, and climate re-
search (Spirtes, Glymour et al. 2000; Pearl 2009; Imbens
and Rubin 2015; Robins 1986; Runge et al. 2019). The
confounding bias, causal by confounders that affect both
the treatment variable and outcome variable, is a challeng-
ing problem for obtaining reliable causal effects using ob-
servational data, especially in the presence of latent con-
founders (Hernán and Robins 2006, 2010).

Instrumental variable (IV) is a well-known tool for mit-
igating the spurious associations caused by latent con-
founders (Angrist and Imbens 1995; Imbens 2014; Martens,
Pestman et al. 2006). The IV approach strongly relies on
a predefined IV, which is required to be independent of
all latent confounders and have a causal effect on the out-
come only through its direct effect on the treatment (Hernán,
Brumback, and Robins 2000; Angrist and Imbens 1995;
Hernán and Robins 2006).

Some IV-based methods have been developed to address
latent confounding in causal effect estimation using obser-
vational data in the static setting (Bowden and Turkington
1990; Angrist and Imbens 1995; Imbens 2014; Hartford,
Lewis et al. 2017; Wang, Yang et al. 2022). However, only
a few IV-based methods are available for the longitudinal
setting (Robins and Tsiatis 1991; Martinussen, Vansteelandt
et al. 2017). Estimating causal effects over time provides the
benefits of analysing changes, interventions, actions, and re-
lationships within the same subjects across different time-
steps in many fields, e.g., education, medicine and clinical
research. It also provides insights for making effective deci-
sions over time (Bica, Alaa et al. 2019).

The primary challenge of estimating causal effects from
longitudinal studies is the time-dependent confounders
which influence both the time-dependent treatment and the
time-dependent outcome of interest, especially those latent
time-dependent confounders (Cui et al. 2023; Michael, Cui
et al. 2023). For example, consider a study that investigates
the effect of an ‘education intervention’ (the treatment), such
as personalised tutoring, on ‘academic performance’ (the
outcome) over time. In this scenario, certain factors like stu-
dents’ pre-existing knowledge levels and study habits, which
change over time, might not be directly measured during the
study, and are latent time-dependent confounders.

When all time-dependent confounders are measured, ad-
justing for these confounders using methods like inverse
probability of treatment, can be utilised to obtain unbiased
estimation of the causal effect of the time-dependent treat-
ment (Ali, Groenwold et al. 2016; Karim, Gustafson et al.
2014). In cases when there are latent time-dependent con-
founders, an IV approach with a valid time-dependent IV
can be employed to recover the unbiased causal effect of
time-dependent treatment from longitudinal data (Hernán,
Brumback, and Robins 2000; Robins 2000). The treatment,
outcome and IV can be time-varying due to the dynamic
and evolving nature (Robins 1986). Following the exam-
ple mentioned above, the ’government funding in education’
can potentially serve as a time-dependent IV for estimating
the causal effect of time-dependent education intervention
on time-dependent academic performance. A valid time-
dependent IV is crucial for the soundness of the IV approach
in longitudinal data, but finding a valid time-dependent IV
poses a major challenge in applications.



Data-driven methods for discovering time-dependent IV
directly from longitudinal data are needed. Many works us-
ing the IV approach in longitudinal studies need a given
valid time-dependent IV (Robins, Hernan, and Brumback
2000; Hernán, Brumback, and Robins 2001)). However, in
practice, it is often impossible to know such an IV in ad-
vance, which makes it impossible to estimate the causal ef-
fect in this case. On the other hand, although there might
not be a variable satisfying the requirements for a time-
dependent IV directly, the information of time-dependent IV
could be inferred from some observed variables.

In this work, we propose a novel sequential architecture
based on a recurrent neural network (RNN), called the Time-
dependent Instrumental Factor Model (TIFM) for learning a
substitute of a time-dependent IV from the historical data
of the covariates in longitudinal data with time-dependent
latent confounders. Then the learned substitute in each se-
quence is used as a time-dependent IV in the Two-Stage
Least Squares (TSLS) regression (Hernán and Robins 2006,
2010) to mitigate the confounding bias caused by latent
time-dependent confounders and obtain unbiased sequential
causal effect estimations.

We summarise the contributions of our paper as follows.

• We study a crucial problem in a longitudinal study and
propose to use a substitute of latent time-dependent IV
for estimating causal effect in the presence of latent
time-dependent confounders. We theoretically analyse
the soundness of the substitute of latent time-dependent
IV in causal effect estimation from longitudinal data with
latent time-dependent confounders.

• We propose a novel Time-dependent Instrumental Fac-
tor Model, TIFM, to learn the substitute of latent time-
dependent IV from data. To the best of our knowledge,
this is the first method which learns a substitute of time-
dependent IV from longitudinal data directly.

• Extensive experiments on synthetic datasets and a real-
world climate dataset demonstrate the effectiveness of
TIFM in causal effect estimation from longitudinal data
with latent time-dependent confounders.

Problem Setting
Throughout the paper, we use uppercase letters to indicate
variables and lowercase letters for their values. A bold-faced
letter is used to represent a set of variables (in uppercase) or
the corresponding values of a set of variables (in lowercase).

For an individual i, the data consists of time-dependent
covariates X̄

(i)
t = (X1, . . . ,Xt) ∈ Xt, history treat-

ment W̄ (i)
t = (W1, . . . ,Wt) ∈ Wt and outcome Ȳ (i)

t+1 =
(Y2, . . . , Yt+1) ∈ Yt+1 for t discrete time-steps. Further-
more, Xt = [Xt1, . . . ,Xtk] ∈ Xt be the k covariates. Note
that Ȳt+1 is a sink node in the full-time graph1 (Mastakouri,
Schölkopf, and Janzing 2021), i.e., there is not a descen-
dant node of Ȳ (i)

t+1. The number of time-steps t ranges within
{1, . . . , T} and is not random. In addition to the measured

1The infinite directed acyclic graph (DAG) over time (Peters,
Janzing, and Schölkopf 2017; Robins 2000).

data, let Ū(i)
t = (U1, . . . , Ut) ∈ Ut be an unmeasured time-

dependent variables, which affect both W̄ (i)
t and Ȳ (i)

t+1. Note
that the superscript (i) for the specific individual will not be
used unless explicitly mentioned.

Let Yt+1(w̄) be the potential outcomes relative to each
possible value of treatment w̄. These potential outcomes are
not generally measured, and their correlation with the mea-
sured data is based on the consistency assumption.
Assumption 1 (Consistency) For a given individual, if
W̄≥t = w̄≥t, then Y (w̄≥t) = Y , i.e., the potential outcomes
on w̄≥t is the same as the factual outcome Y .

We aim to recover the average causal effects over time
in the presence of latent time-dependent confounders Ūt

between W̄t and Ȳt+1, where Ūt affects both W̄t and
Ȳt+1. The latent Sequential Randomisation Assumption
(SRA) (Robins 2000) holds if Ūt is measured:
Assumption 2 (Latent SRA) Y (w̄) ⊥⊥ Wt | W̄t−1 =
w̄t−1, X̄t, Ūt.
Note that the latent confounders Ūt affects both W̄t and
Ȳt+1, resulting in non-identifiable causal effects of W̄t on
Ȳt+1 (Pearl 2009; Hernán and Robins 2010). However, tra-
ditional IV methods (Bowden and Turkington 1990; Angrist
and Imbens 1995; Imbens 2014; Hartford, Lewis et al. 2017;
Cheng, Xu et al. 2023) for the static setting cannot be used
to obtain unbiased estimation of the causal effects of W̄t on
Ȳt+1 over time. In this work, we aim to utilise the “time-
dependent IV” to address the effect of latent time-dependent
confounders Ūt in causal effect estimation over time.

We assume that there exists a latent time-dependent IV S̄t

caused by a set of time-dependent covariates X̄t, satisfying
the following longitudinal generalisation of the standard IV
assumptions (Robins and Tsiatis 1991; Cui et al. 2023) as
described below, for 1 ≤ t ≤ T , and w̄t ∈ WT :
Assumption 3 (IV relevance) E(Wt | W̄t−1, X̄t, S̄t) ̸=
E(Wt | W̄t−1, X̄t, S̄t−1).
The assumption says that the IV S̄t should be associated
with W̄t conditioning on the history data.
Assumption 4 (IV-outcome independence)
S̄t ⊥⊥ (Yt+1(w̄),Xt+1,Ut+1) | W̄t = w̄t, X̄t, Ūt.
This assumption essentially indicates that there is not a di-
rect causal effect of S̄t on Xt+1, and Ut+1 and Yt+1 will
be identified conditioning on history data if one set W̄t =
w̄t (Cui et al. 2023).
Assumption 5 (IV–unmeasured confounder independence)
St ⊥⊥ Ū | W̄t−1, X̄t, S̄t−1.

Assumption 5 says that St and Ū are independent condi-
tioning on history data and Xt. These three assumptions are
utilised to formalise the temporal relationships within the
data. Fig. 1 presents an illustrative causal DAG, offering a
clear interpretation of the intricate relationships among S̄t,
X̄t, Ūt, W̄t and Ȳt+1.

It is worth mentioning that both assumptions 4 and 5 are
not testable from longitudinal data in the presence of Ūt.
Moreover, most IV-based methods in longitudinal studies re-
quire a known time-dependent IV, which may not be avail-
able in numerous real-world applications. The challenge of



Figure 1: A causal DAG illustrating our problem setting and
time-dependent IV, where we have latent time-dependent
confounders Ūt ∈ Ūt (indicated by shaded circles), and
the time-dependent confounders X̄t, and a latent time-
dependent IV S̄t (indicated by shaded circles), satisfying
Assumptions 3, 4 and 5. We aim to estimate the causal ef-
fects of W̄t on Ȳt+1 over time by inferring and using the
substitute of S̄t from X̄t and W̄t for estimating the causal
effects of W̄t on Ȳt+1 over time in the presence of latent
time-dependent confounders Ūt.

identifying or searching for a valid time-dependent IV re-
mains an unresolved problem in causal inference within a
temporal context. To offer an alternative approach to this
open problem in causal inference with longitudinal data,
in this paper, we focus on exploring how to learn time-
dependent IV with minimal reliance on domain knowledge.

The Proposed TIFM Method
In this work, we aim to learn a substitute of the latent
time-dependent IV S̄t from the history data for estimating
the causal effects of W̄t on Ȳt+1 in the presence of latent
time-dependent confounders. Then, we apply the inferred
substitute of the latent time-dependent IV within the Two-
Stage Least Squares regression (TSLS) to estimate the aver-
age causal effects over time in the presence of latent time-
dependent confounders.

Objective Formulation
Causal inference requires certain assumptions to draw valid
causal conclusions from observational data, particularly
when latent time-dependent confounders are present. In this
work, we focus on the assumed setting shown in Fig. 1 to in-
fer the time-dependent IV for estimating the causal effects
of W̄t on Ȳt+1 over time in the presence of latent time-
dependent confounders Ūt.

Specifically, our objective is to infer a sequence of latent
factors L̄t = (L1, . . . , Lt) ∈ Lt as a substitute of S̄t from
history data using deep learning techniques. Then, the in-
ferred substitute L̄t serves as a time-dependent IV for causal
inference from longitudinal data with latent time-dependent
confounders Ūt.

Recently, Bica et al. (Bica, Alaa et al. 2020) have built a
factor model over time to infer latent variables render the as-
signed multiple treatments conditionally independent in the
estimation of treatment responses over time. Different from

the work (Bica, Alaa et al. 2020), we consider a single treat-
ment Wt, rather than multiple treatments at time t. Note that
a single treatment is a much more difficult problem setting
than the multiple treatments setting, in the sense that single
treatment provides less information about the latent time-
dependent confounders Ūt. Similar to the work (Wang and
Blei 2019; Bica, Alaa et al. 2020), we also make the no latent
single-cause confounders assumption: there are no single-
cause confounders between X̄t and W̄t, i.e., no variable that
affects just one of X̄t and W̄t over time.

Solution Outline
Let H̄t−1 = (W̄t−1, X̄t−1, L̄t−1). At time t, TIFM con-
structs the latent variable lt = f(h̄t−1), where h̄t−1 =
(w̄t−1, x̄t−1, l̄t−1) denotes the values of history data H̄t−1.
In our problem setting, S̄t in the causal DAG in Fig. 1 is
unobserved. The latent variable L̄t renders the marginal dis-
tribution of Xt as:

p(xt1, . . . , xtk | lt) =
k∏

j=1

p(xtj | lt) (1)

To obtain the substitute L̄t, the factor model of X̄t with
joint distribution is built on X̄t and history data H̄t−1 as a
latent variable model:
p(σ1:k, x̄T , l̄T ) = p(σ1:k)×

T∏
t=1

(p(lt | h̄t−1)

k∏
j=1

p(xtj | lt, σj))
(2)

where σ1:k are parameters. We fit Eq. (2) to capture the de-
pendencies among the covariates caused by the latent time-
dependent IV S̄t. We then infer L̄t, which can be regarded
as a substitute for S̄t. Thus, by leveraging the dependencies
between multiple covariate measurements, the factor model
enables us to recover a sequence of latent variables L̄t from
history data.

To provide a theoretical proof for Eq. (2), we first in-
troduce the following Sequential Kallenberg Construction,
a modified definition of the “Kallenburg Construction”
in (Kallenberg and Kallenberg 1997; Bica, Alaa et al. 2020).
Definition 1 (Sequential Kallenberg construction) At
time-step t, the distribution of Xt = [Xt1, . . . ,Xtk]
follows a sequential Kallenberg construction through the
random variables lt = f(h̄t−1), provided that there exist
measurable functions ftj : L × [0, 1] → Xt and random
variables Mtj ∈ [0, 1], where j = 1, . . . , k, satisfying the
condition Xtj = ftj(Lt,Mtj), with Mtj ∈ [0, 1] jointly
satisfying (Mt1, . . . ,Mtk) ⊥⊥ W̄t | X̄t−1, L̄t.

We then present the following theorem, which guarantees
that L̄t can serve as a valid time-dependent instrument for
unbiased causal effect estimation of W̄t on Ȳt+1 using lon-
gitudinal data, even in the presence of latent time-dependent
confounders Ūt.
Theorem 1 If the distribution p(x̄T ) can be represented us-
ing the factor model p(σ1:k, x̄T , l̄T ), we can deduce that
S̄t is captured by the substitute L̄t which serves as a time-
dependent IV.



Proof 1 First, we proof that L̄t is a substitute of S̄t. Based
on Lemma 1 in (Bica, Alaa et al. 2020), if at every time-
step t, the distribution of Xt = (Xt1, . . . ,Xtk) admits
the Kallenberg construction through L̄t = f(H̄t−1) sat-
isfying (Mt1, . . . ,Mtk) ⊥⊥ W̄t | X̄t−1, L̄t, then we have
(Xt1, . . . ,Xtk) ⊥⊥ W̄t | X̄t−1, L̄t (More details see the
supplement.). Furthermore, according to Lemma 2 in (Bica,
Alaa et al. 2020), if the distribution p(x̄T ) can be repre-
sented using the factor model p(σ1:k, x̄T , l̄T ), then we have
a sequential Kallenberg construction for each time-step.
Hence, S̄t must be captured by the substitute L̄t.

Next, L̄t is a substitute of the latent time-dependent
IV S̄t, so at the time-step t, we have that (i). E(Wt |
W̄t−1, X̄t, L̄t) ̸= E(Wt | W̄t−1, X̄t, L̄t−1) (Assump-
tions 3 holds); (ii). L̄t ⊥⊥ (Yt+1(w̄),Xt+1,Ut+1) | W̄t =
w̄t, X̄t, Ūt (Assumptions 4 holds); and (iii). L̄t ⊥⊥ Ū |
W̄t−1, X̄t, L̄t−1 (Assumptions 5 holds). Therefore, the sub-
stitute L̄t serves as a time-dependent IV.

Theorem 1 guarantees the soundness of our proposed
TIFM method. L̄t is a substitute of S̄t and plays the role
of time-dependent IV in the estimation of the causal effect
of W̄t on Ȳt+1 from longitudinal data in the presence of la-
tent time-dependent confounders Ūt. In the next section, we
introduce our implementation of TIFM method over time in
practice.

Implementation
In this section, we present an implementation for acquir-
ing the substitute of time-dependent IV. Long Short-Term
Memory (LSTM) is a specialised type of recurrent neural
network (RNN) that is well-suited for tasks involving se-
quences and time-series data. Hence, we devise a LSTM
architecture primed to capture the substitute of latent time-
dependent IV from history data. Formally, the component
dedicated to substitute IVs is outlined as follows:

L1 = LSTM(ψ),

Lt = LSTM(Lt−1,Xt−1),
(3)

where ψ is the randomly initialised parameter for the initial
step, which is subsequently trained in conjunction with the
remaining parameters within the LSTM.

After training the LSTM model, we extract L̄t from the
model and utilise it as the time-dependent IV for an IV-
based causal effect estimation. It is essential to emphasise
that our TIFM method imposes no restrictions on subse-
quent causal effect estimators, thereby allowing for the in-
corporation of well-known estimators like TSLS (Angrist
and Imbens 1995), DeepIV (Hartford, Lewis et al. 2017),
and Ortho.IV (Syrgkanis, Lei et al. 2019), as plug-ins within
the overarching framework. The architecture of the proposed
TIFM method is visually depicted in Fig. 2.

Experiments
To validate the performance of the proposed TIFM method,
we first conduct experiments on synthetic datasets, where
we have access to the true time-dependent IVs, enabling pre-
cise computation of the actual causal effects over time. Fol-
lowing the methodologies outlined in (Wang and Blei 2019;

Figure 2: An overview on the architecture of the TIFM
method. Lt is generated by LSTM as a function of the his-
tory state ht and current input. The TSLS estimators in the
blue rectangular can be replaced by any possible IV-based
causal effect estimator.

Bica, Alaa et al. 2020), we generate synthetic datasets to
assess the performance of our TIFM. Comparative evalua-
tions are drawn against the state-of-the-art estimators. Fur-
thermore, sensitivity analyses on TIFM are carried out to
glean insights into its resilience across diverse parameter
configurations. To demonstrate the practical applicability of
our TIFM, we further apply TIFM to a real-world climate
dataset as a case study, verifying its effectiveness in real-
world scenarios.

Experiment Setup
To ensure fair comparisons, we perform simulation studies
on several synthetic datasets. These datasets are generated
by adhering to the data generation process outlined in the
study by Bica et al. (Bica, Alaa et al. 2020). The specifics
of our synthetic dataset generation procedure are available
in the supplement due to space constraints. In this work, we
generate the synthetic datasets with a variety range of sam-
ple sizes: 2k, 4k, 6k, and 8k. To avoid the bias brought by the
data generation process, we repeatedly generate 30 datasets
for each sample size. To induce time dependencies, we set
p = 1 and p = 3 (p is from p-order autoregressive processes,
the detail can be found in the supplements.). The dimension-
ality of the covariates X and the latent confounders are set
to 3, respectively.

Models for Comparison We compare TIFM with multi-
ple state-of-the-art causal effect estimators, including: (1)
LinearDML (LDML) (Chernozhukov, Chetverikov et al.
2018), which addresses the reverse causal metric bias
by applying the cross-fitting strategy; (2) NonParamDML
(NPDML) (Chernozhukov, Chetverikov et al. 2018), which
is a non-parametric version of Double ML estimators that
can have arbitrary final ML models; (3) SparseLinearDML
(SLDML) (Semenova et al. 2023), for which loss function
of the LinearDML estimator is modified by incorporating
L1 regularisation; (4) CausalForestDML (CFDML) (Athey,
Tibshirani, and Wager 2019), which employs two random
forests for causal estimations for predicting two poten-



Figure 3: Results of the absolute errors across all estimators, accompanied by the mean plus standard deviation calculated over
30 synthetic datasets. Notably, our TIFM consistently shows a reduction in absolute error as the time-step increases.

tial outcomes respectively; (5) KernelDML (KDML) (Nie
and Wager 2021), which combines dimensionality reduction
techniques and kernel methods; (6) Mete-learner (Künzel,
Sekhon et al. 2019), specifically, the X-learner (XLer). The
aforementioned machine learning-based estimators operate
within a static setting and result in biased estimations when
applied to longitudinal data, as they disregard the time de-
pendencies between covariates.
Notes. IV-based estimators working in a static setting are
not compared in our experiments since these methods as-
sume a known IV explicitly included in the dataset, but in
our problem setting, the IV is not measured. Some well-
known double-robust models are used for comparison, but
the experimental results show that these models produce a
huge deviation in the longitudinal data, so we will not report
them in the main text and provide the results in the supple-
ment. We also note that there are some models that estimate
causal effects over time, including Standard Marginal Struc-
tural Models (Robins, Hernan, and Brumback 2000; Hernán,
Brumback, and Robins 2001), Recurrent Marginal Struc-
tural Networks (Lim, Alaa, and Schaar 2018) and Time Se-
ries Deconfounder (Bica, Alaa et al. 2020). However, these
models are completely different from the tasks we focus
on, so they cannot be compared as discussed in our related
work. They produce predictions of potential outcomes, but
our TIFM method focuses on the estimation of causal effects
for each time-step.

Evaluation Criterion For evaluating the performance of
TIFM and the comparison models, we use the absolute error
|β̂ − β| as the metric, where β̂ is the estimated results and β

is the ground truth.

Implementation Details The implementations of
comparison models are from the Python package
econml (Keith Battocchi et al. 2019). We use Tensor-
Flow (Abadi, Agarwal et al. 2015) to implement our
proposed TIFM method. We provide the implementation
of our TIFM method and the parameter settings in the
supplement.

Performance Evaluation
The absolute errors across all estimators on 30 synthetic
datasets are visualised in Fig. 3. From Fig. 3, we have that
the proposed TIFM method achieves the lowest absolute er-
ror compared with other methods. Although the comparison
methods can adjust for covariates to enable unbiased causal
inference in a static setting, they still struggle to handle la-
tent confounders and time-dependent onfounders, resulting
in some large estimation errors.

Our proposed TIFM method learns a suitable substitute
for time-dependent IV from history data, followed by using
an IV-based estimator to estimate causal effects at each time-
step. By doing so, our TIFM effectively addresses bias aris-
ing from time dependence, while the IV estimator employed
by TIFM tackles bias from time-dependent confounders and
latent confounders. As a result, our TIFM method consis-
tently outperforms the others, especially beyond the fifth
time-step.

Please note that additional comprehensive results for var-
ious sample sizes and settings of p = 3 are provided in
the supplement. The success of our proposed TIFM method



Table 1: Experimental results for sensitivity analysis on the synthetic datasets with 5k.

time-step-1 time-step-5 time-step-10 time-step-15 time-step-20

p = 1 Baseline 0.227±0.000 0.283±0.000 0.251±0.000 0.231±0.000 0.209±0.000
TIFM 0.173±0.001 0.013±0.001 0.005±0.001 0.001±0.001 0.005±0.001

p = 3 Baseline 0.280±0.000 0.323±0.000 0.335±0.000 0.311±0.000 0.272±0.000
TIFM 0.287±0.002 0.023±0.001 0.013±0.000 0.031±0.001 0.058±0.002

in achieving lower absolute errors demonstrates its superior
performance in handling complex confounding factors and
time dependencies.

Sensitivity Analysis
In this section, we conduct a sensitivity analysis on the pa-
rameter p (time dependencies), exploring its impact on the
performance of our proposed TIFM. Due to page limitations,
we maintain a fixed sample size of 5k while varying the
value of p to compare the baseline2 with TIFM. For detailed
results, please refer to the supplement.

Table 1 presents the comparative results under different
time-steps, and we observe no significant changes in the out-
comes. Specifically, the baseline model exhibits a consider-
able absolute error when compared to TIFM. Notably, as we
manipulate the value of p, we notice that increasing p leads
to a decline in performance. This trend is consistent with our
expectations, as higher values of p imply increased complex-
ity of time dependence, resulting in deteriorated estimation
performance for static models. TIFM is also affected to some
extent by changes in p. As p increases, we observe a slight
increase in the absolute error; however, overall, our TIFM
continues to demonstrate superior performance compared to
the baseline.

Case Study: NCEP-NCAR Reanalysis 1 Dataset
The dataset used in this study is sourced from the National
Centers for Environmental Prediction (NCEP) and the Na-
tional Center for Atmospheric Research (NCAR). It is a
comprehensive global climate dataset widely employed in
atmospheric research (Kalnay, Kanamitsu et al. 1996). The
dataset encompasses a diverse array of variables, such as
precipitation rate (prate), pressure level (pres), air tempera-
ture (air), skin temperature (skt), downward short-wave radi-
ation flux (dswrf), clear-sky upward solar flux (csusf), clear-
sky downward longwave flux (csdlf), cloud forcing net long-
wave flux (cfnlf), wind speed (wspd), minimum temperature
(tmin), and seasonal categories (season).

For the analysis conducted in this research, we focus on
specific regions, namely the United States (403 data points)
and Europe (418 data points). Subsequently, we select cfnlf,
wspd, and skt as the treatments under investigation, aiming
to estimate their respective causal effects on prate (precipi-
tation rate) at each time-step. The total time-steps are set to
120, encompassing monthly intervals from 2013 to 2022.

We apply our TIFM method to the two different regions
and present the results for the United States in Fig. 4. The

2The β̂ for each time step is calculated without any adjustment.

Figure 4: The estimated causal effects over time by our pro-
posed TIFM method on the data from United States.

Figure 5: The estimated causal effects over time by our pro-
posed TIFM method on the data from Europe.

analysis reveals that skin temperature (skt) has the most sig-
nificant impact on rainfall in the United States. This finding
aligns with domain experts’ knowledge, as the diverse cli-
mates in the United States make surface temperature a cru-
cial driver of rainfall, especially in areas where high tem-
peratures can trigger strong convective activity (Seeley and
Romps 2020).

Fig. 5 displays the results for Europe. In this region,
wind speed does not directly cause rainfall; rather, it influ-
ences cloud formation and distribution by transporting water
vapour. When these clouds contain sufficiently large water
droplets, precipitation occurs, leading to rainfall (Haylock,
Hofstra et al. 2008; Uppala, Kållberg et al. 2005; Zolina,
Simmer et al. 2013). The result in Fig. 5 is consistent with



the domain knowledge and the result indicates that cloud
forcing net longwave flux (cfnlf) has the most significant
causal effect on precipitation (prate) in Europe.

Overall, the impact of these three causal factors on rainfall
varies across different regions, and their exact magnitude of
influence may be influenced by other latent factors, such as
topography and vegetation cover, which are challenging to
directly measure. However, our proposed TIFM method ef-
fectively captures the interactions between these latent fac-
tors and historical records. Despite the assumption that his-
torical information serves as a proxy for these latent factors,
our experimental results show the applicability of the TIFM
method in real-world problems.

Related Work
Most prior IV-based methods have primarily concentrated
on causal effect estimation from observational data within
a static setting (Imbens 2014; Athey, Tibshirani, and Wa-
ger 2019; Cheng, Li et al. 2022). There have been rela-
tively fewer methods dealing with longitudinal data. In this
study, we delve into methods for estimating causal effects
over time while considering the influence of latent time-
dependent confounders, by employing time-dependent IV.
In this section, we review the work closely relative to our
TIFM method, including IV-based methods in static settings,
treatment effect estimations over time and time-dependent
IV-based methods for causal effect estimation.
IV-based methods in static setting. Instrumental vari-

ables are a powerful approach for mitigating the confound-
ing bias arising from latent confounders in causal effect esti-
mation (Hernán and Robins 2006; Imbens 2014). For exam-
ple, Hartford et al. (Hartford, Lewis et al. 2017) introduced
an innovative IV method called DeepIV, which utilises deep
ensembles to estimate causal effects in nonlinear scenarios.
Athey et al. (Athey, Tibshirani, and Wager 2019) devised an
IV method based on random forest regression. Cheng et al.
(Cheng, Xu et al. 2023) introduced a novel method which
utilises a deep generative model to construct and disentan-
gle the representations of conditional IV and its correspond-
ing conditioning set using observational data. In contrast to
these IV-based methods designed for a static setting, our
focus centres on the acquisition of a valid time-dependent
IV using longitudinal data for the estimation of causal ef-
fects over time, particularly in the presence of latent time-
dependent confounders.
Treatment effect estimations over time. The realm of
causal effect estimation over time has seen prominent con-
tributions from the epidemiology community, encompassing
techniques such as g-computation, structural nested mean
models (SNMM), and marginal structural mean models
(MSMM) (Robins 1986, 1997; Robins, Hernan, and Brum-
back 2000; Robins 2000). These methods commonly resort
to logistic or linear regression models for prediction, render-
ing them ill-suited for addressing intricate time-dependent
relationships. Recently, Lim et al. (Lim, Alaa, and Schaar
2018) introduced a novel concept, the recurrent marginal
structural networks, to predict the evolution of treatment re-
sponses over time. Similarly, Bica et al. (Bica, Alaa et al.

2019) presented a novel solution: the counterfactual recur-
rent network (CRN), a sequence-to-sequence model. CRN
constructs a treatment-invariant representation that empow-
ers the prediction of counterfactual scenarios. Moreover,
Bica et al. (Bica, Alaa et al. 2020) proposed a time series
deconfounder employing a recurrent neural network (RNN)
architecture for multiple treatments causal effect estimation,
further expanding the CRN for analysing the complexities
of time series data.
IV-based methods for causal effect estimations over time.
Recently, there have been some works on developing IV-
based methods for analysing time-to-event outcomes in
the presence of latent time-dependent confounders. For in-
stance, Martinussen et al. (Martinussen, Vansteelandt et al.
2017) developed a novel IV estimator via a semiparametric
structural cumulative model in the context of time-to-event
outcomes. This seminal contribution takes shape in the form
of a structural accelerated failure model tailored for time-
event analysis. In a more contemporary stride, Michael et
al. (Michael, Cui et al. 2023) delve into the realm of iden-
tifying and estimating MSMMS. They navigate the land-
scape of time-dependent treatments and introduce the novel
concept of time-dependent IV into the mix. Further ex-
panding the frontiers, Cui et al. (Cui et al. 2023) delve
into the realm of sufficient conditions for identifying pa-
rameters within a marginal structural model using temporal
data. Their methodology hinges on the utilisation of time-
dependent IV, which is a valuable resource derived from do-
main knowledge or expertise. Rather than being provided
with a pre-existing time-dependent IV, our TIFM aims to
learn and generate a substitute of the latent time-dependent
IV using history data.

In comparison to the reviewed works, our study focuses
on addressing causal effect estimation over time in the pres-
ence of latent time-dependent confounders. We achieve this
by generating a substitute for the latent time-dependent
IV with minimal reliance on domain knowledge. Through
our research, we aim to contribute to the advancement of
methodologies for addressing the complexities inherent in
longitudinal data analysis.

Conclusion
In this paper, we propose a novel sequential Time-dependent
Instrumental Factor Model (TIFM) designed for learning a
substitute of the latent time-dependent IV. This substitution
enables accurate estimation of causal effects in longitudinal
data, particularly when facing time-dependent latent con-
founders. We provide theoretical evidence to establish the
validity of TIFM in the context of learning the substitute
for the latent time-dependent IV from data. Additionally, we
devise a LSTM architecture to effectively capture the surro-
gate of the latent time-dependent IV in practical scenarios.
To evaluate the performance of TIFM in causal effect esti-
mation over time while accounting for latent time-dependent
confounders, we conduct extensive experiments on synthetic
datasets. To further illustrate the applicability of TIFM, we
conduct a case study using a real-world climate dataset. The
results of this case study underscore the potential of TIFM
in real-world applications.
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