
O

A
B
a

b

c

d

e

A

K
I
A
M
R
R
B

C

1

p
t
p
o
s
t
a

h
R

SoftwareX 31 (2025) 102239

2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

n Item Response Theory-based R module for Algorithm Portfolio Analysis
rodie Oldfield a, Sevvandi Kandanaarachchi b,e ,∗, Ziqi Xu c, Mario Andrés Muñoz d,e
CSIRO’s Data61, Eveleigh, NSW 2015, Australia
CSIRO’s Data61, Clayton, VIC 3068, Australia
School of Computing Technologies, RMIT University, Melbourne, VIC 3000, Australia
School of Computing and Information Systems, The University of Melbourne Parkville, VIC 3010, Australia
ARC Centre in Optimisation Technologies, Integrated Methodologies, and Applications (OPTIMA), Carlton, VIC 3052, Australia

 R T I C L E I N F O

eywords:
tem Response Theory
lgorithm evaluation
achine learning
 language
 Shiny
enchmarking portfolios

 A B S T R A C T

Experimental evaluation is crucial in AI research, especially for assessing algorithms across diverse tasks. Many
studies often evaluate a limited set of algorithms, failing to fully understand their strengths and weaknesses
within a comprehensive portfolio. This paper introduces an Item Response Theory (IRT) based analysis
tool for algorithm portfolio evaluation called AIRT-Module. Traditionally used in educational psychometrics,
IRT models test question difficulty and student ability using responses to test questions. Adapting IRT to
algorithm evaluation, the AIRT-Module contains a Shiny web application and the R package airt. AIRT-
Module uses algorithm performance measures to compute anomalousness, consistency, and difficulty limits for
an algorithm and the difficulty of test instances. The strengths and weaknesses of algorithms are visualised
using the difficulty spectrum of the test instances. AIRT-Module offers a detailed understanding of algorithm
capabilities across varied test instances, thus enhancing comprehensive AI method assessment. It is available
at https://sevvandi.shinyapps.io/AIRT/.
ode metadata

Current code version R Package: 0.23 Shiny: 0.0.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00455
Permanent link to Reproducible Capsule
Legal Code License GPL-3.0
Code versioning system used git
Software code languages, tools, and services used R
Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual https://sevvandi.github.io/airt/index.html
Support email for questions
. Motivation and significance

Experimental evaluation is critical for AI research, especially for
roblems with elusive theoretical evaluation. AI researchers are in-
erested in the performance of a particular method for a specific
roblem instance, across multiple instances, and against other meth-
ds. Evaluating a diverse set of algorithms across a comprehensive
et of test instances contributes to an increased understanding of
he interplay between instance characteristics, algorithm mechanisms,
nd algorithm performance. Such an evaluation helps determine an

∗ Corresponding author at: CSIRO’s Data61, Clayton, VIC 3068, Australia.
E-mail addresses: brodie.oldfield@data61.csiro.au (B. Oldfield), sevvandi.kandanaarachchi@data61.csiro.au (S. Kandanaarachchi).

algorithm’s strengths and weaknesses and provides a broad overview
of the collective capabilities of an algorithm portfolio. However, many
studies that evaluate only a small number of algorithms on a limited
set of test instances fail to reveal where any algorithm belongs within
a state-of-the-art algorithm portfolio’s capabilities or where algorithms’
unique strengths and weaknesses lie when considering a diverse range
of test problem difficulties and challenges. In this paper, we present
AIRT-Module, an Item Response Theory (IRT)-based analysis tool for
evaluating a portfolio of algorithms.
ttps://doi.org/10.1016/j.softx.2025.102239
eceived 21 August 2024; Received in revised form 3 June 2025; Accepted 16 Jun
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
e 2025
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0000-0002-0337-0395
https://sevvandi.shinyapps.io/AIRT/
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00455
https://sevvandi.github.io/airt/index.html
mailto:brodie.oldfield@data61.csiro.au
mailto:sevvandi.kandanaarachchi@data61.csiro.au
https://doi.org/10.1016/j.softx.2025.102239
https://doi.org/10.1016/j.softx.2025.102239
http://creativecommons.org/licenses/by/4.0/

B. Oldfield et al. SoftwareX 31 (2025) 102239
IRT [1,2] is commonly used in educational psychometrics to analyse
and model responses to test questions. The premise of IRT is that there
is an underlying characteristic, such as verbal/mathematical ability,
boredom proneness [3] or misinformation susceptibility [4] that is diffi-
cult to measure directly but can be modelled via responses to questions.
In an educational setting an 𝑁 ×𝑀 matrix of marks from 𝑁 students to
𝑀 questions is the input to the IRT model. The items are the questions,
and the response to the items is modelled using IRT. The outputs of
an IRT model consist of question characteristics and student ability.
For a 2-parameter IRT model the question characteristics are difficulty
and discrimination of questions. Different IRT models are appropriate
depending on the type of response: dichotomous, polytomous and
continuous. Dichotomous models are used for binary responses such as
true/false questions. Polytomous models are used for discrete-valued,
ordinal responses commonly seen in surveys ranging from ‘‘strongly
agree’’ to ‘‘strongly disagree’’ options. Continuous models are used
for continuous-valued responses such as extended written responses
in exams [1]. While research into educational psychometrics has used
IRT since the 1960s, its use in machine learning is more recent [5–7].
The Algorithmic Item Response Theory (AIRT) framework is one such
adaptation [8].

When evaluating a portfolio of algorithms we consider the per-
formance of 𝑀 algorithms to 𝑁 test instances. The performance of
algorithm 𝑖 to a test instance 𝑗 is a numerical value, such as predic-
tive accuracy in classification. The AIRT framework adapts traditional
IRT to algorithm evaluation by mapping algorithms to items and test
instances to participants, resulting in equating algorithm performance
values with student marks. With this mapping AIRT fits an IRT model
and gains insights on the algorithm strengths and weaknesses.

AIRT-Module comprises an R package called airt which can han-
dle continuous and polytomous models, and a Shiny web application
called the AIRT Shiny App which can handle only continuous models.
Using algorithm performance values as input, AIRT-Module computes
an algorithm’s anomalousness, consistency and difficulty limit, and
the test instance difficulty. For a given problem set, the space of test
instance difficulties constitutes the problem difficulty spectrum.

• Anomalousness is a boolean value flagged if an algorithm excels
with difficult problems but struggles with easy problems.

• Consistency is a numeric value that indicates the stability of
the performance. A low consistency algorithm gives fluctuating
performance for datasets of similar difficulty, whereas a high
consistency algorithm gives similar performance irrespective of
dataset difficulty.

• Difficulty Limit is a numeric value that describes the highest
difficulty level an algorithm can handle. A higher difficulty limit
score means that the algorithm can handle harder problems.

• Problem difficulty spectrum is the one-dimensional space where
test instance difficulty values reside, ranging from easy to hard.
The strengths and weaknesses of algorithms can be visualised in
this space.

In the R package airt, these attributes can be computed and the
algorithm strengths and weaknesses plotted using continuous data,
e.g., an algorithm’s accuracy score, or polytomous (discrete) data, e.g. a
grading system between A and F. Furthermore, AIRT has a simple set
of tools for model validation that uses actual performance values and
the performance according to the fitted AIRT model. The Shiny App
introduces a dynamic user interface to airt with the functionality to
upload datasets, transform datasets, change function parameters, and
download the resultant plots. We developed the AIRT Shiny App to
increase its availability to users unfamiliar with the R language.
2
2. Software description

The AIRT-Module operates under an Input ⇒ Model ⇒ Output
system. The input is a dataset of performance values for a portfolio of
algorithms to a diverse set of test instances. An IRT model adapted for
algorithm evaluation is fitted to this data [8]. We will call this the AIRT
model for the remainder of the paper. The output is the resulting model,
its parameters and the created plots. While the R package has the
functionality to fit polytomous performance data, our focus here is on
continuous data such as classification accuracies (ranging in [0, 100]).

The AIRT Shiny App is built using the airt R package and has
two interfaces: a walkthrough interface and a dashboard (See Fig.
2). The walkthrough interface is oriented in a presentation manner,
where users are shown airt visualisations and analysis as sections.
Each section is only rendered when a user chooses to continue and
contains UI elements allowing plots to respond dynamically to user
inputs. Each section includes an explanation of the plot and critical
methods of analysis. In contrast, the dashboard interface generates
all plots simultaneously and renders a plot at a time based on user
preference.

2.1. Software architecture

2.1.1. Overview
Fig. 1 illustrates, at a high level, the AIRT-Module architecture,

consisting of the R Package airt, which handles IRT and related
computations, and the AIRT Shiny App made using R Shiny, which runs
the R Package and renders the results to users. Users can run the airt
R Package independently of the AIRT Shiny App.

2.1.2. R package
After suitably mapping algorithms and test problems to the IRT

setting [8], the R packages mirt [9] and EstCRM [10] are used
to fit an AIRT Model for polytomous and continuous data respec-
tively. To allow for a broader range of algorithms, such as anomalous
algorithms, parts of EstCRM code were modified [8]. After fitting
the model, AIRT-Module computes algorithm attributes and finds the
strengths and weaknesses using latent_trait_analysis(). The
airt attributes are then used within autoplot to create plots.

2.1.3. AIRT Shiny App
AIRT Shiny App uses Shiny by posit, allowing a server to run R code

and communicate with a user’s session. Structurally, the AIRT_Shiny
project directory contains a UI.R document, which houses the HTML/
CSS/JavaScript the web page is scaffolded from, a server.R doc-
ument, which contains the main rendering and logic functions, and
utility documents to group related functions. Pre-computed datasets are
under the ./Data directory and are loaded into server.R on server
startup.

AIRT Shiny App also has an Input, Model, and Output pipeline.
Inputs are datasets where users can upload their dataset in CSV format
or use a pre-generated example dataset. The dataset is validated and
modelled within relevant airt functions such as cirtmodel() and
latent_trait_analysis(). Where possible and appropriate, the
output of functions is cached. Plots are generated from the outputs and
rendered by the UI.

2.1.4. Deployment
A release version of airt is available from the Comprehensive R

Archive Network (CRAN) repository, while a development version is
available in GitHub. Users can access the AIRT Shiny App at https:
//sevvandi.shinyapps.io/AIRT/, deploy it locally via RStudio or host
it using a service that handles Shiny-compatible environments.

https://sevvandi.shinyapps.io/AIRT/
https://sevvandi.shinyapps.io/AIRT/
https://sevvandi.shinyapps.io/AIRT/

B. Oldfield et al.

Fig. 1. AIRT-Module workflows: One (Green) showing the workflow when only using the airt R Package, the other (Orange) when using the AIRT Shiny App. Thick-bordered
cells indicate starting actions in the workflow.

Fig. 2. Dashboard view of the AIRT Shiny App.

SoftwareX 31 (2025) 102239

3

B. Oldfield et al. SoftwareX 31 (2025) 102239
//CRAN Release Version
install.packages("airt")

//GitHub Development Version
install.packages("devtools")
devtools::install_github("sevvandi/airt")

Installation instructions for AIRT Shiny App are available on https:
//github.com/broldfield/AIRT_Shiny under the README.md file.

2.2. Software functionality

2.2.1. AIRT R package functions
Data is loaded into the IRT model using cirtmodel() for con-

tinuous data or pirtmodel() for polytomous data. Typically, func-
tions suffixed or prefixed with ‘c’ or ‘crm’ are for continuous data,
and functions with ‘p’ are for polytomous data. These functions ac-
cept a dataset as a data frame and output the IRT parameters rel-
evant to airt. For cirtmodel(), this would be in the element
cirtmodel_output$model$param.

The original data frame, the param element, and an epsilon value
are used as parameters in latent_trait_analysis() to create
the airt attributes. This output, denoted as LTA_output, is used in all
airt plotting functions for analysis.

The autoplot(object, plottype) function is used to gener-
ate a plot using ggplot [11] based on the input object and the plot
type specified. For LTA_output, there are four plot types of relevance.
Plot types 1 and 2 show Performance against Problem Difficulty as
scatter plots. Plot type 3 shows smoothing splines fitted to the per-
formance values where the 𝑥 axis denotes the problem difficulty. The
smoothing splines are particularly important as the best-performing
algorithm for a given problem difficulty will be the one whose spline
is at the top. Type 4 generates a bar chart version of plot type 3,
where the default setting corresponding to epsilon = 0 shows the
best algorithm for every value in the problem difficulty spectrum.
The epsilon value is a goodness threshold. When epsilon = 0,
only the best algorithm for every problem difficulty value is consid-
ered. When epsilon = 0.01, algorithms with performance within
0.01 of the best are considered. Modifying the epsilon value in
latent_trait_analysis() allows multiple algorithms to overlap
in the same problem difficulty.

Heatmaps can be generated for continuous data using the
heatmaps_crm, showing positive sloped lines if an algorithm is
not anomalous, thinner lines for more discriminating algorithms and
blurrier lines for more consistent algorithms.

A user can analyse whether the fitted AIRT model is appropri-
ate by employing model_goodness_crm() and effectiveness_
crm(). When the output of model_goodness_crm() is passed
to autoplot, the distribution of errors is plotted. The output of
effectiveness_crm() and a plot type are used within autoplot
to create three different plots. Type 1: Actual Effectiveness against
Effectiveness Tolerance, Type 2: Predicted Effectiveness against Ef-
fective Tolerance, and Type 3: Predicted Effectiveness against Actual
Effectiveness. Type 3 is important as the closer the points are to the
dotted line 𝑦 = 𝑥, the better the fitted AIRT model.

For polytomous data, the output of pirtmodel() is used with
tracelines_ poly() and autoplot to create tracelines showing
the probability of reaching a performance band. Performance bands are
labelled 1 to 5, with the probability of scoring 5 being higher for easier
datasets and lower for challenging datasets. Similar to how model good-
ness is visualised for continuous data, model_goodness_poly()
and effectiveness_poly() display the same plots and use the
same plot types.
4
2.2.2. AIRT Shiny App functions
Users can use a pre-generated example file or upload their dataset as

a CSV document. When a user uploads a dataset to the server, a valida-
tion check is committed over the whole CSV to ensure cirtmodel()
can use it. The validation primarily checks that all fields besides the
column names are numeric.

As the AIRT Shiny App aims to assist in data analysis, additional
tools exist to modify the dataset. Modifying the dataset occurs before
the dataset is processed, with UI elements allowing the user to:

• ‘Scale Data’ which fits each dataset value to be a proportion
between 0 and 1 by flagging scale = TRUE in latent_trait_
analysis().

• ‘Invert Data’ transforms the dataset using max 𝑥 − 𝑥 for each
column to map low to high values. This functionality is needed
when low values indicate better performance, such as when root
mean square error is the performance metric.

• ‘Scale By’ determines whether the proportion of a value received
from ‘Scale Data’ is calculated per Column (Algorithm) or over
the whole dataset.

By default, a CSV’s minimum and maximum performance values
are validated to be between 0 and 1. If performance values are not
scaled, e.g. watts, then users can untick ‘Scale Data’. This property is
set within cirtmodel() and latent_trait_analysis() as an
optional parameters min.item and max.item.

Furthering the data analysis tools found in airt are plots and
tables unique to the AIRT Shiny App, which expand upon existing data
presented to the user:

• When a user selects an algorithm when viewing the AIRT At-
tributes table, the Difficulty Limit and Consistency data in
latent_trait_analysis is used to create a box plot (Fig. 3).
This box plot shows all the algorithms as points with the selected
algorithm highlighted.

• Extending from the Strengths and Weaknesses bar chart, we can
compute the proportion of the latent trait spectrum occupied by
each algorithm (see Fig. 4). The table containing these propor-
tions updates alongside the epsilon slider next to the bar chart
(Fig. 6).

Users can download their generated plots and tables in PNG format
inside a tar file, generated by downloadHandler() and create temp
directories for that session.

3. Illustrative examples

We follow the workflows shown in Fig. 1 from the AIRT Shiny App
and R Package perspectives to complete the task of determining the
strengths and weaknesses of the algorithm portfolio.

3.1. R package workflow

Firstly, we would load the airt library and load in our data.

library("airt")
data("classification_cts")
df <- classification_cts

Our data, pre-supplied by the airt package, can be replaced by a
user’s data conforming to the expected format. The pre-supplied data
is taken from the MATILDA data repository [12].

irt_params <- cirtmodel(df)
airt_params <- latent_trait_analysis(df,
 paras = irt_params$model$param,
 epsilon = 0)

https://github.com/broldfield/AIRT_Shiny
https://github.com/broldfield/AIRT_Shiny
https://github.com/broldfield/AIRT_Shiny

B. Oldfield et al. SoftwareX 31 (2025) 102239
Fig. 3. A table showing the airt attributes of an algorithm portfolio. Boxplots show its consistency and difficulty when an algorithm is highlighted on the table.

The data frame is passed to cirtmodel() to fit the AIRT model.
The IRT parameters stored in param are then passed into
latent_trait_analysis() alongside the original data frame with
an epsilon value. The plots are generated with a default epsilon value
of 0, which shows the strongest and weakest algorithms for every value
in the problem difficulty spectrum. Suppose epsilon is incremented
by 0.1. In that case, algorithms within the strongest and weakest by
0.1 in performance are also displayed, with the range of displayed
algorithms increasing with the epsilon value.
5
autoplot(airt_params, plottype = 3)
autoplot(airt_params, plottype = 4)

Four plots can be generated from airt_params using autoplot
by setting the value of plottype. Options {1,2} plot algorithm per-
formance with problem difficulty spectrum on the 𝑥 axis and algorithm
performance on the 𝑦 axis. Option 3 displays smoothing splines fitted to
the performance values as a function of problem difficulty. The splines
corresponding to the strongest algorithm for a given problem difficulty

B. Oldfield et al. SoftwareX 31 (2025) 102239
Fig. 4. A table generated under the Strengths and Weaknesses Bar Chart showing the proportion occupied by an algorithm on the problem difficulty spectrum for the selected
epsilon value.
come at the top, while the weakest come at the bottom. Option 4
displays the strengths and weaknesses of algorithms across the problem
spectrum. Fig. 4 gives an example output of strengths and weaknesses
in the form of proportion of latent trait occupied.

3.2. AIRT Shiny App workflow

Here, we need a dataset to analyse, similar to the airt package.
As shown in Fig. 5, AIRT Shiny App has controls for uploading or
selecting datasets. In this workflow example, we will use the ‘Clas-
sification’ example dataset from the ‘Select Example File’ Dropdown
box. Alternatively, the user could use the ‘Browse’ file upload input to
upload their dataset as a CSV to the application. If the user chooses to
upload their dataset, it goes through an additional validation check.

After selecting the dataset, the user would press the compute button
and navigate to the Splines or Strengths and Weaknesses section to see
the rendered plots as in Fig. 6.

Unlike the airt package, users can select an algorithm to highlight
that algorithm’s spline in the Splines section or remove the grey areas
corresponding to the standard errors around each smoothing spline. In
the Strengths and Weaknesses section, users can move a vertical slider
on the left of the plot to change the epsilon value, which re-renders the
plot.

3.2.1. AIRT Shiny App internals
Internally, after the user uploads and presses compute, the dataset

is passed to the different airt functions and cached. In this case,
the server loads classification_cts from their ‘Classification’
example file selection, following the same airt workflow listed above.

However, to allow for more fine-grained controls of the plot gen-
eration, AIRT Shiny App typically does not use autoplot when UI
controls are added. Because of the number of possible plots with UI
controls, only the default plots are cached; for example, a Strengths
and Weaknesses plot with epsilon set to 0. For other plots, there is
a general flow of fetching the cached cirtmodel() and latent_
trait_analysis(), and then using:

//in server.R
renderPlot({
 generate_plot(plottype, epsilon_value)
})
6
to send the plot to the UI. This generate_plot function is a
wrapper around autoplot to allow code reuse.

In situations with UI controls, such as the Splines section, cus-
tom plotting functions are used instead. In the case of the Splines
plot, generate_splines() generates the standard Splines plot
from cached airt functions, but when an algorithm is selected,
generate_spline_plot() is used instead. This function takes the
algorithm chosen from the UI and uses gghighlight to highlight that
algorithm.

4. Impact

We have outlined the AIRT-Module, a tool that provides unique and
accessible insight into evaluating the performance of an algorithm port-
folio using Item Response Theory. This module assists users in making
empirical-based decisions with easily digestible data visualisations, a
streamlined workflow flow, and a choice between using an R Package
or a Shiny App.

For a given task such as image classification, as the space of test
problems expands, different algorithms are typically proposed to tackle
different types of instances. Thus, discovering complementary algo-
rithms is important as they can be part of an algorithm portfolio
capable of tackling diverse instances. The AIRT-Module assists in show-
casing algorithm diversity by computing IRT-based algorithm metrics
and visualising their strengths and weaknesses. Furthermore, it aids
reproducibility, an important aspect in AI research.

As of 21st of August 2024, the airt has over 23900 downloads on
CRAN. Moreover, a tutorial on the AIRT Shiny App was conducted at
The Genetic and Evolutionary Computation Conference 2024.

5. Conclusions

We have presented AIRT-Module, a two-component R ecosystem
comprising an R package and a Shiny app for algorithm portfolio
evaluation. AIRT-Module brings insights from IRT – a suite of meth-
ods from educational psychometrics – to algorithm evaluation. Our
framework enables a detailed and comprehensive analysis of algorithm
performance across diverse problem settings, contributing to a more
nuanced understanding of their strengths and weaknesses. This tool
enhances the capability to position algorithms within a state-of-the-
art portfolio and identify their strengths and weaknesses, ultimately
advancing AI research. Future work can explore expanding our frame-
work to incorporate a higher dimensional latent trait and adapting it
to handle new data types and evaluation metrics.

B. Oldfield et al. SoftwareX 31 (2025) 102239
Fig. 5. Inputs shown at the start of AIRT Shiny App. Modifiers transform the dataset, Data Selection allows users to either upload a dataset or select an example dataset from
MATILDA.
Fig. 6. Splines Plot (Above), Strengths and Weaknesses Plot (Below). Only the AIRT Shiny App has the UI controls.
CRediT authorship contribution statement

Brodie Oldfield: Writing – original draft, Visualization, Valida-
tion, Software, Resources, Methodology, Investigation, Formal anal-
ysis, Data curation. Sevvandi Kandanaarachchi: Writing – review
& editing, Writing – original draft, Validation, Supervision, Software,
Project administration, Methodology, Investigation, Conceptualization.
Ziqi Xu: Writing – review & editing, Writing – original draft, Software.
Mario Andrés Muñoz: Writing – review & editing, Supervision, Project
administration, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
7
References

[1] Embretson SE, Reise SP. Item Response Theory. Psychology Press; 2013.
[2] Hambleton RK, Swaminathan H. Item Response Theory: Principles and

Applications. Boston: Kluwer Nijhoff Publishing, Springer Science; 1985.
[3] Struk AA, Carriere JS, Cheyne JA, Danckert J. A short boredom proneness

scale: Development and psychometric properties. Assessment 2017;24(3):346–59.
http://dx.doi.org/10.1177/1073191115609996.

[4] Maertens R, Götz FM, Golino HF, Roozenbeek J, Schneider CR, Kyrychenko Y, et
al. The Misinformation Susceptibility Test (MIST): A psychometrically validated
measure of news veracity discernment. Behav Res Methods 2024;56(3):1863–99.
http://dx.doi.org/10.3758/s13428-023-02124-2.

[5] Martínez-Plumed F, Prudêncio RBC, Usó AM, Hernández-Orallo J. Item response
theory in AI: analysing machine learning classifiers at the instance level. Artificial
Intelligence 2019;271:18–42. http://dx.doi.org/10.1016/j.artint.2018.09.004.

[6] Xu Z, Ma C, Ren Y, Chan J, Shao W, Xia F. Towards Better Evaluation
of Recommendation Algorithms with Bi-directional Item Response Theory. In:
Companion proceedings of the ACM on web conference 2025. 2025, p. 1455–9.
http://dx.doi.org/10.1145/3701716.3715540.

http://refhub.elsevier.com/S2352-7110(25)00206-7/sb1
http://refhub.elsevier.com/S2352-7110(25)00206-7/sb2
http://refhub.elsevier.com/S2352-7110(25)00206-7/sb2
http://refhub.elsevier.com/S2352-7110(25)00206-7/sb2
http://dx.doi.org/10.1177/1073191115609996
http://dx.doi.org/10.3758/s13428-023-02124-2
http://dx.doi.org/10.1016/j.artint.2018.09.004
http://dx.doi.org/10.1145/3701716.3715540

B. Oldfield et al. SoftwareX 31 (2025) 102239
[7] Xu Z, Kandanaarachchi S, Ong CS, Ntoutsi E. Fairness Evaluation with Item
Response Theory. In: Proceedings of the ACM on web conference 2025. 2025,
p. 2276–88. http://dx.doi.org/10.1145/3696410.3714883.

[8] Kandanaarachchi S, Smith-Miles K. Comprehensive Algorithm Portfolio Evalu-
ation using Item Response Theory. J Mach Learn Res 2023;24:177:1–52, URL
https://jmlr.org/papers/v24/20-1318.html.

[9] Chalmers RP. mirt: A Multidimensional Item Response Theory package for the
R Environment. J Stat Softw 2012;48(6):1–29. http://dx.doi.org/10.18637/jss.
v048.i06.
8
[10] Zopluoglu C. EstCRM: Calibrating parameters for the Samejima’s Continuous IRT
model. 2022, R package version 1.6.

[11] Wickham H. ggplot2: Elegant graphics for data analysis. Springer-Verlag New
York; 2016.

[12] Smith-Miles K, Muñoz MA, Neelofar N. Melbourne Algorithm Test Instance
Library with Data Analytics (MATILDA). 2020, URL https://matilda.unimelb.edu.
au/matilda/. [Accessed 5 August 2024].

http://dx.doi.org/10.1145/3696410.3714883
https://jmlr.org/papers/v24/20-1318.html
http://dx.doi.org/10.18637/jss.v048.i06
http://dx.doi.org/10.18637/jss.v048.i06
http://dx.doi.org/10.18637/jss.v048.i06
http://refhub.elsevier.com/S2352-7110(25)00206-7/sb10
http://refhub.elsevier.com/S2352-7110(25)00206-7/sb10
http://refhub.elsevier.com/S2352-7110(25)00206-7/sb10
http://refhub.elsevier.com/S2352-7110(25)00206-7/sb11
http://refhub.elsevier.com/S2352-7110(25)00206-7/sb11
http://refhub.elsevier.com/S2352-7110(25)00206-7/sb11
https://matilda.unimelb.edu.au/matilda/
https://matilda.unimelb.edu.au/matilda/
https://matilda.unimelb.edu.au/matilda/

	An Item Response Theory-based R module for Algorithm Portfolio Analysis
	Motivation and significance
	Software description
	Software architecture
	Overview
	R Package
	AIRT Shiny App
	Deployment

	Software Functionality
	AIRT R Package Functions
	AIRT Shiny App Functions

	Illustrative examples
	R Package Workflow
	AIRT Shiny App Workflow
	AIRT Shiny App Internals

	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

