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 A B S T R A C T

Experimental evaluation is crucial in AI research, especially for assessing algorithms across diverse tasks. Many 
studies often evaluate a limited set of algorithms, failing to fully understand their strengths and weaknesses 
within a comprehensive portfolio. This paper introduces an Item Response Theory (IRT) based analysis 
tool for algorithm portfolio evaluation called AIRT-Module. Traditionally used in educational psychometrics, 
IRT models test question difficulty and student ability using responses to test questions. Adapting IRT to 
algorithm evaluation, the AIRT-Module contains a Shiny web application and the R package airt. AIRT-
Module uses algorithm performance measures to compute anomalousness, consistency, and difficulty limits for 
an algorithm and the difficulty of test instances. The strengths and weaknesses of algorithms are visualised 
using the difficulty spectrum of the test instances. AIRT-Module offers a detailed understanding of algorithm 
capabilities across varied test instances, thus enhancing comprehensive AI method assessment. It is available 
at https://sevvandi.shinyapps.io/AIRT/.
ode metadata
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. Motivation and significance

Experimental evaluation is critical for AI research, especially for 
roblems with elusive theoretical evaluation. AI researchers are in-
erested in the performance of a particular method for a specific 
roblem instance, across multiple instances, and against other meth-
ds. Evaluating a diverse set of algorithms across a comprehensive 
et of test instances contributes to an increased understanding of 
he interplay between instance characteristics, algorithm mechanisms, 
nd algorithm performance. Such an evaluation helps determine an 
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algorithm’s strengths and weaknesses and provides a broad overview 
of the collective capabilities of an algorithm portfolio. However, many 
studies that evaluate only a small number of algorithms on a limited 
set of test instances fail to reveal where any algorithm belongs within 
a state-of-the-art algorithm portfolio’s capabilities or where algorithms’ 
unique strengths and weaknesses lie when considering a diverse range 
of test problem difficulties and challenges. In this paper, we present 
AIRT-Module, an Item Response Theory (IRT)-based analysis tool for 
evaluating a portfolio of algorithms.
ttps://doi.org/10.1016/j.softx.2025.102239
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IRT [1,2] is commonly used in educational psychometrics to analyse 
and model responses to test questions. The premise of IRT is that there 
is an underlying characteristic, such as verbal/mathematical ability, 
boredom proneness [3] or misinformation susceptibility [4] that is diffi-
cult to measure directly but can be modelled via responses to questions. 
In an educational setting an 𝑁 ×𝑀 matrix of marks from 𝑁 students to 
𝑀 questions is the input to the IRT model. The items are the questions, 
and the response to the items is modelled using IRT. The outputs of 
an IRT model consist of question characteristics and student ability. 
For a 2-parameter IRT model the question characteristics are difficulty 
and discrimination of questions.  Different IRT models are appropriate 
depending on the type of response: dichotomous, polytomous and 
continuous. Dichotomous models are used for binary responses such as 
true/false questions. Polytomous models are used for discrete-valued, 
ordinal responses commonly seen in surveys ranging from ‘‘strongly 
agree’’ to ‘‘strongly disagree’’ options. Continuous models are used 
for continuous-valued responses such as extended written responses 
in exams [1]. While research into educational psychometrics has used 
IRT since the 1960s, its use in machine learning is more recent [5–7]. 
The Algorithmic Item Response Theory (AIRT) framework is one such 
adaptation [8]. 

When evaluating a portfolio of algorithms we consider the per-
formance of 𝑀 algorithms to 𝑁 test instances. The performance of 
algorithm 𝑖 to a test instance 𝑗 is a numerical value, such as predic-
tive accuracy in classification. The AIRT framework adapts traditional 
IRT to algorithm evaluation by mapping algorithms to items and test 
instances to participants, resulting in equating algorithm performance 
values with student marks. With this mapping AIRT fits an IRT model 
and gains insights on the algorithm strengths and weaknesses. 

AIRT-Module comprises an R package called airt  which can han-
dle continuous and polytomous models, and a Shiny web application 
called the AIRT Shiny App  which can handle only continuous models. 
Using algorithm performance values as input, AIRT-Module computes 
an algorithm’s anomalousness, consistency and difficulty limit, and 
the test instance difficulty. For a given problem set, the space of test 
instance difficulties constitutes the problem difficulty spectrum.

• Anomalousness is a boolean value flagged if an algorithm excels 
with difficult problems but struggles with easy problems.

• Consistency is a numeric value that indicates the stability of 
the performance. A low consistency algorithm gives fluctuating 
performance for datasets of similar difficulty, whereas a high 
consistency algorithm gives similar performance irrespective of 
dataset difficulty.

• Difficulty Limit is a numeric value that describes the highest 
difficulty level an algorithm can handle. A higher difficulty limit 
score means that the algorithm can handle harder problems.

• Problem difficulty spectrum is the one-dimensional space where 
test instance difficulty values reside, ranging from easy to hard. 
The strengths and weaknesses of algorithms can be visualised in 
this space. 

In the R package airt, these attributes can be computed and  the 
algorithm strengths and weaknesses plotted using continuous data, 
e.g., an algorithm’s accuracy score, or polytomous (discrete) data, e.g. a 
grading system between A and F.  Furthermore, AIRT has a simple set 
of tools for model validation that uses actual performance values and 
the performance according to the fitted AIRT model.  The Shiny App 
introduces a dynamic user interface to airt with the functionality to 
upload datasets, transform datasets, change function parameters, and 
download the resultant plots. We developed the AIRT Shiny App to 
increase its availability to users unfamiliar with the R language.
2 
2. Software description

The AIRT-Module operates under an Input ⇒ Model ⇒ Output 
system. The input is a dataset of performance values for a portfolio of 
algorithms to a diverse set of test instances. An IRT model adapted for 
algorithm evaluation is fitted to this data [8]. We will call this the AIRT 
model for the remainder of the paper. The output is the resulting model, 
its parameters and the created plots. While the R package has the 
functionality to fit polytomous performance data, our focus here is on 
continuous data such as classification accuracies (ranging in [0, 100]).

The AIRT Shiny App is built using the airt R package and has 
two interfaces: a walkthrough interface and a dashboard (See Fig. 
2). The walkthrough interface is oriented in a presentation manner, 
where users are shown airt visualisations and analysis as sections. 
Each section is only rendered when a user chooses to continue and 
contains UI elements allowing plots to respond dynamically to user 
inputs. Each section includes an explanation of the plot and critical 
methods of analysis. In contrast, the dashboard interface generates 
all plots simultaneously and renders a plot at a time based on user 
preference.

2.1. Software architecture

2.1.1. Overview
Fig.  1 illustrates, at a high level, the AIRT-Module architecture, 

consisting of the R Package airt, which handles IRT and related 
computations, and the AIRT Shiny App made using R Shiny, which runs 
the R Package and renders the results to users. Users can run the airt
R Package independently of the AIRT Shiny App.

2.1.2. R package
After suitably mapping algorithms and test problems to the IRT 

setting [8], the R packages mirt [9] and EstCRM [10] are used 
to fit an AIRT Model for polytomous and continuous data respec-
tively. To allow for a broader range of algorithms, such as anomalous 
algorithms, parts of EstCRM code were modified [8]. After fitting 
the model, AIRT-Module computes algorithm attributes and finds the 
strengths and weaknesses using latent_trait_analysis(). The
airt attributes are then used within autoplot to create plots.

2.1.3. AIRT Shiny App
AIRT Shiny App uses Shiny by posit, allowing a server to run R code 

and communicate with a user’s session. Structurally, the AIRT_Shiny 
project directory contains a UI.R document, which houses the HTML/
CSS/JavaScript the web page is scaffolded from, a server.R doc-
ument, which contains the main rendering and logic functions, and 
utility documents to group related functions. Pre-computed datasets are 
under the ./Data directory and are loaded into server.R on server 
startup.

AIRT Shiny App also has an Input, Model, and Output pipeline. 
Inputs are datasets where users can upload their dataset in CSV format 
or use a pre-generated example dataset. The dataset is validated and 
modelled within relevant airt functions such as cirtmodel() and
latent_trait_analysis(). Where possible and appropriate, the 
output of functions is cached. Plots are generated from the outputs and 
rendered by the UI.

2.1.4. Deployment
A release version of airt is available from the Comprehensive R 

Archive Network (CRAN) repository, while a development version is 
available in GitHub. Users can access the AIRT Shiny App at https:
//sevvandi.shinyapps.io/AIRT/, deploy it locally via RStudio or host 
it using a service that handles Shiny-compatible environments.

https://sevvandi.shinyapps.io/AIRT/
https://sevvandi.shinyapps.io/AIRT/
https://sevvandi.shinyapps.io/AIRT/
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Fig. 1. AIRT-Module workflows: One (Green) showing the workflow when only using the airt R Package, the other (Orange) when using the AIRT Shiny App. Thick-bordered 
cells indicate starting actions in the workflow.

Fig. 2. Dashboard view of the AIRT Shiny App.
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//CRAN Release Version
install.packages("airt")

//GitHub Development Version
install.packages("devtools")
devtools::install_github("sevvandi/airt")

Installation instructions for AIRT Shiny App are available on https:
//github.com/broldfield/AIRT_Shiny under the README.md file.

2.2. Software functionality

2.2.1. AIRT R package functions
Data is loaded into the IRT model using cirtmodel() for con-

tinuous data or pirtmodel() for polytomous data. Typically, func-
tions suffixed or prefixed with ‘c’ or ‘crm’ are for continuous data, 
and functions with ‘p’ are for polytomous data. These functions ac-
cept a dataset as a data frame and output the IRT parameters rel-
evant to airt. For cirtmodel(), this would be in the element
cirtmodel_output$model$param.

The original data frame, the param element, and an epsilon value 
are used as parameters in latent_trait_analysis() to create 
the airt attributes. This output, denoted as LTA_output, is used in all
airt plotting functions for analysis.

The autoplot(object, plottype) function is used to gener-
ate a plot using ggplot [11] based on the input object and the plot 
type specified. For LTA_output, there are four plot types of relevance. 
Plot types 1 and 2 show Performance against Problem Difficulty as 
scatter plots. Plot type 3 shows smoothing splines fitted to the per-
formance values where the 𝑥 axis denotes the problem difficulty. The 
smoothing splines are particularly important as the best-performing 
algorithm for a given problem difficulty will be the one whose spline 
is at the top. Type 4 generates a bar chart version of plot type 3, 
where the default setting corresponding to epsilon = 0 shows the 
best algorithm for every value in the problem difficulty spectrum. 
The epsilon value is a goodness threshold. When epsilon = 0, 
only the best algorithm for every problem difficulty value is consid-
ered. When epsilon = 0.01, algorithms with performance within 
0.01 of the best are considered. Modifying the epsilon value in
latent_trait_analysis() allows multiple algorithms to overlap 
in the same problem difficulty.

Heatmaps can be generated for continuous data using the
heatmaps_crm, showing positive sloped lines if an algorithm is 
not anomalous, thinner lines for more discriminating algorithms and 
blurrier lines for more consistent algorithms.

A user can analyse whether the fitted AIRT model is appropri-
ate by employing model_goodness_crm() and effectiveness_
crm(). When the output of model_goodness_crm() is passed 
to autoplot, the distribution of errors is plotted. The output of
effectiveness_crm() and a plot type are used within autoplot
to create three different plots. Type 1: Actual Effectiveness against 
Effectiveness Tolerance, Type 2: Predicted Effectiveness against Ef-
fective Tolerance, and Type 3: Predicted Effectiveness against Actual 
Effectiveness. Type 3 is important as the closer the points are to the 
dotted line 𝑦 = 𝑥, the better the fitted AIRT model. 

For polytomous data, the output of pirtmodel() is used with
tracelines_ poly() and autoplot to create tracelines showing 
the probability of reaching a performance band. Performance bands are 
labelled 1 to 5, with the probability of scoring 5 being higher for easier 
datasets and lower for challenging datasets. Similar to how model good-
ness is visualised for continuous data, model_goodness_poly()
and effectiveness_poly() display the same plots and use the 
same plot types.
4 
2.2.2. AIRT Shiny App functions
Users can use a pre-generated example file or upload their dataset as 

a CSV document. When a user uploads a dataset to the server, a valida-
tion check is committed over the whole CSV to ensure cirtmodel()
can use it. The validation primarily checks that all fields besides the 
column names are numeric.

As the AIRT Shiny App aims to assist in data analysis, additional 
tools exist to modify the dataset. Modifying the dataset occurs before 
the dataset is processed, with UI elements allowing the user to:

• ‘Scale Data’ which fits each dataset value to be a proportion 
between 0 and 1 by flagging scale = TRUE in latent_trait_
analysis().

• ‘Invert Data’ transforms the dataset using max 𝑥 − 𝑥 for each 
column to map low to high values. This functionality is needed 
when low values indicate better performance, such as when root 
mean square error is the performance metric.

• ‘Scale By’ determines whether the proportion of a value received 
from ‘Scale Data’ is calculated per Column (Algorithm) or over 
the whole dataset.

By default, a CSV’s minimum and maximum performance values 
are validated to be between 0 and 1. If performance values are not 
scaled, e.g. watts, then users can untick ‘Scale Data’. This property is 
set within cirtmodel() and latent_trait_analysis() as an 
optional parameters min.item and max.item.

Furthering the data analysis tools found in airt are plots and 
tables unique to the AIRT Shiny App, which expand upon existing data 
presented to the user:

• When a user selects an algorithm when viewing the AIRT At-
tributes table, the Difficulty Limit and Consistency data in
latent_trait_analysis is used to create a box plot (Fig.  3). 
This box plot shows all the algorithms as points with the selected 
algorithm highlighted.

• Extending from the Strengths and Weaknesses bar chart, we can 
compute the proportion of the latent trait spectrum occupied by 
each algorithm (see Fig.  4). The table containing these propor-
tions updates alongside the epsilon slider next to the bar chart 
(Fig.  6).

Users can download their generated plots and tables in PNG format 
inside a tar file, generated by downloadHandler() and create temp 
directories for that session.

3. Illustrative examples

We follow the workflows shown in Fig.  1 from the AIRT Shiny App 
and R Package perspectives to complete the task of determining the 
strengths and weaknesses of the algorithm portfolio.

3.1. R package workflow

Firstly, we would load the airt library and load in our data.

library("airt")
data("classification_cts")
df <- classification_cts

Our data, pre-supplied by the airt package, can be replaced by a 
user’s data conforming to the expected format. The pre-supplied data 
is taken from the MATILDA data repository [12].

irt_params <- cirtmodel(df)
airt_params <- latent_trait_analysis(df,
    paras = irt_params$model$param,
    epsilon = 0)

https://github.com/broldfield/AIRT_Shiny
https://github.com/broldfield/AIRT_Shiny
https://github.com/broldfield/AIRT_Shiny
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Fig. 3. A table showing the airt attributes of an algorithm portfolio. Boxplots show its consistency and difficulty when an algorithm is highlighted on the table.
 

The data frame is passed to cirtmodel() to fit the AIRT model. 
The IRT parameters stored in param are then passed into
latent_trait_analysis() alongside the original data frame with
an epsilon value. The plots are generated with a default epsilon value 
of 0, which shows the strongest and weakest algorithms for every value 
in the problem difficulty spectrum. Suppose epsilon is incremented 
by 0.1. In that case, algorithms within the strongest and weakest by 
0.1 in performance are also displayed, with the range of displayed 
algorithms increasing with the epsilon value.
5 
autoplot(airt_params, plottype = 3)
autoplot(airt_params, plottype = 4)

Four plots can be generated from airt_params using autoplot
by setting the value of plottype. Options {1,2} plot algorithm per-
formance with problem difficulty spectrum on the 𝑥 axis and algorithm 
performance on the 𝑦 axis. Option 3 displays smoothing splines fitted to 
the performance values as a function of problem difficulty. The splines 
corresponding to the strongest algorithm for a given problem difficulty 
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Fig. 4. A table generated under the Strengths and Weaknesses Bar Chart showing the proportion occupied by an algorithm on the problem difficulty spectrum for the selected 
epsilon value.
come at the top, while the weakest come at the bottom. Option 4
displays the strengths and weaknesses of algorithms across the problem 
spectrum. Fig.  4 gives an example output of strengths and weaknesses 
in the form of proportion of latent trait occupied.

3.2. AIRT Shiny App workflow

Here, we need a dataset to analyse, similar to the airt package. 
As shown in Fig.  5, AIRT Shiny App has controls for uploading or 
selecting datasets. In this workflow example, we will use the ‘Clas-
sification’ example dataset from the ‘Select Example File’ Dropdown 
box. Alternatively, the user could use the ‘Browse’ file upload input to 
upload their dataset as a CSV to the application. If the user chooses to 
upload their dataset, it goes through an additional validation check.

After selecting the dataset, the user would press the compute button 
and navigate to the Splines or Strengths and Weaknesses section to see 
the rendered plots as in Fig.  6.

Unlike the airt package, users can select an algorithm to highlight 
that algorithm’s spline in the Splines section or remove the grey areas 
corresponding to the standard errors around each smoothing spline. In 
the Strengths and Weaknesses section, users can move a vertical slider 
on the left of the plot to change the epsilon value, which re-renders the 
plot.

3.2.1. AIRT Shiny App internals
Internally, after the user uploads and presses compute, the dataset 

is passed to the different airt functions and cached. In this case, 
the server loads classification_cts from their ‘Classification’ 
example file selection, following the same airt workflow listed above.

However, to allow for more fine-grained controls of the plot gen-
eration, AIRT Shiny App typically does not use autoplot when UI 
controls are added. Because of the number of possible plots with UI 
controls, only the default plots are cached; for example, a Strengths 
and Weaknesses plot with epsilon set to 0. For other plots, there is 
a general flow of fetching the cached cirtmodel() and latent_
trait_analysis(), and then using:

//in server.R
renderPlot({
    generate_plot(plottype, epsilon_value)
})
6 
to send the plot to the UI. This generate_plot function is a 
wrapper around autoplot to allow code reuse.

In situations with UI controls, such as the Splines section, cus-
tom plotting functions are used instead. In the case of the Splines 
plot, generate_splines() generates the standard Splines plot 
from cached airt functions, but when an algorithm is selected,
generate_spline_plot() is used instead. This function takes the 
algorithm chosen from the UI and uses gghighlight to highlight that 
algorithm.

4. Impact

We have outlined the AIRT-Module, a tool that provides unique and 
accessible insight into evaluating the performance of an algorithm port-
folio using Item Response Theory. This module assists users in making 
empirical-based decisions with easily digestible data visualisations, a 
streamlined workflow flow, and a choice between using an R Package 
or a Shiny App.

For a given task such as image classification, as the space of test 
problems expands, different algorithms are typically proposed to tackle 
different types of instances. Thus, discovering complementary algo-
rithms is important as they can be part of an algorithm portfolio 
capable of tackling diverse instances. The AIRT-Module assists in show-
casing algorithm diversity by computing IRT-based algorithm metrics 
and visualising their strengths and weaknesses. Furthermore, it aids 
reproducibility, an important aspect in AI research.

As of 21st of August 2024, the airt has over 23900 downloads on 
CRAN. Moreover, a tutorial on the AIRT Shiny App was conducted at 
The Genetic and Evolutionary Computation Conference 2024.

5. Conclusions

We have presented AIRT-Module, a two-component R ecosystem 
comprising an R package and a Shiny app for algorithm portfolio 
evaluation. AIRT-Module brings insights from IRT – a suite of meth-
ods from educational psychometrics – to algorithm evaluation. Our 
framework enables a detailed and comprehensive analysis of algorithm 
performance across diverse problem settings, contributing to a more 
nuanced understanding of their strengths and weaknesses. This tool 
enhances the capability to position algorithms within a state-of-the-
art portfolio and identify their strengths and weaknesses, ultimately 
advancing AI research. Future work can explore expanding our frame-
work to incorporate a higher dimensional latent trait and adapting it 
to handle new data types and evaluation metrics.
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Fig. 5. Inputs shown at the start of AIRT Shiny App. Modifiers transform the dataset, Data Selection allows users to either upload a dataset or select an example dataset from 
MATILDA.
Fig. 6. Splines Plot (Above), Strengths and Weaknesses Plot (Below). Only the AIRT Shiny App has the UI controls.
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