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Abstract
Within the realm of causal inference, a pivotal task involves causal effect estima-
tion from observational data when there exist confounding variables. The K-Nearest 
Neighbour Matching (K-NNM) method is widely applied to handle confounding 
bias, but its general application sets a uniform K value for all samples, which can 
lead to suboptimal results in practice. To overcome this limitation, this paper intro-
duces a novel method for causal effect estimation called Dynamic K-Nearest Neigh-
bour Matching (DK-NNM). The DK-NNM method employs a data-driven learning 
strategy to determine the optimal value of K for each sample. In practice, DK-NNM 
reconstructs a sparse coefficient matrix for all samples using sparse learning, while 
simultaneously learning a graph matrix to preserve local information and sample 
similarity. This approach helps identify the most suitable K-value for each sample. 
Additionally, DK-NNM utilizes joint propensity and prognostic scores to effec-
tively mitigate confounding bias arising from high-dimensional covariates during 
the K-NNM process. Experiments performed on various synthetic, semi-synthetic, 
and real-world datasets conclusively demonstrate that DK-NNM surpasses baseline 
models in estimating causal effects from observational data and provides significant 
improvements over traditional methods.

Keywords  Causal inference · Confounding bias · Sparse learning · K-nearest 
neighbour matching

Responsible editor: Joao Gama.

Yinghao Zhang and Tingting Xu contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-025-01107-5&domain=pdf


	 Y. Zhang et al.35  Page 2 of 24

1  Introduction

Causal inference is essential to understand data generation mechanisms in a vari-
ety of real-world domains, including economics (Keele 2015), government pol-
icy evaluation (Holland et al. 1985), and fairness (Xu et al. 2023). A key focus 
in causal inference is estimating the causal effect of a treatment on an outcome 
of interest. A central challenge in this process is to address confounding bias, 
which occurs when covariates influencing both treatment and outcome have dif-
ferent distributions between the treated and control groups (Stuart and Elizabeth 
2010). Although randomized controlled trials (RCTs) are considered the gold 
standard for establishing causality (Deaton and Cartwright 2018), they are often 
impractical due to high costs, time demands, and ethical concerns (Imbens and 
Rubin 2015). Consequently, estimating causal effects from observational data has 
become a pragmatic alternative in many applications (Cheng et al. 2024).

Matching is a cornerstone strategy in the domain of causal effect estima-
tion, with the aim of alleviating confounding bias (Stuart and Elizabeth 2010). 
By matching, researchers strive to create comparable treated and control groups, 
thereby balancing the distribution of confounding variables. Commonly employed 
matching methods include exact matching, where units with identical covariate 
values are matched; propensity score matching (PSM), which pairs units based on 
their estimated probability of receiving treatment; full matching, which optimally 
matches all units; genetic matching (GenMatch) (Diamond and Sekhon 2013), a 
flexible and robust method that uses evolutionary algorithms to optimize balance; 
and Mahalanobis distance matching, which matches units based on a multivariate 
measure of distance (Stuart 2010). In our work, we focus on studying one of the 
most popular methods, K-Nearest Neighbour Matching (K-NNM) (Rubin 1974).

K-NNM is a widely used technique in causal inference (Stuart 2010) that seeks 
to pair each treated subject with K control subjects who share the closest covari-
ate values, thereby forming comparable groups of treated and control units. How-
ever, the number of nearest neighbors, or the K parameter, plays a critical role 
in determining the quality of K-NNM for causal effect estimation. Selecting the 
appropriate K is challenging: choosing too small a K makes the estimate sensitive 
to outliers, while selecting too large a K reduces the similarity among matched 
samples, thereby failing to adequately mitigate confounding bias. Traditional 
approaches often use a fixed K, which can lead to poor estimates in real-world 
applications by overlooking heterogeneity within different data subsets (Zhang 
and Li 2017; Wu and Parampalli 2019).

To illustrate the limitations of a fixed K in K-NNM, we provide an example as 
depicted in Fig.  1. Here, counterfactual outcomes are calculated for three sam-
ples. When K = 2, the nearest neighbor space (represented by dashed circles) 
for the matched samples is defined. However, the second sample from the treat-
ment group actually has three nearest neighbors, while the third sample has only 
one nearest control sample. This example underscores the importance of allow-
ing different samples to be matched with varying numbers of nearest neighbors. 
Consequently, there is a clear need for a method that dynamically determines the 
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optimal K-value, thereby enhancing K-NNM’s accuracy and efficiency in causal 
effect estimation.

To determine an optimal K-value for each individual in K-NNM, we propose a 
sparse representation learning method that reconstructs a sparse coefficient matrix 
while simultaneously learning a graph matrix to preserve local information and 
sample similarity (Zhu and Li 2016). Consequently, the optimal K-value for each 
individualis derived from this learned sparse representation space. To the best of 
our knowledge, no prior work has explored the role of local structure information 
around samples in determining K-values in K-NNM for causal inference. Moreover, 
no established strategy exists for addressing confounding bias due to high-dimen-
sional covariates when determining the optimal K-value for each individual. In our 
work, we employ both propensity and prognostic scores (Rubin and Thomas 2000; 
Leacy and Stuart 2014) to address confounding bias and reduce high-dimensional 
covariates, thereby circumventing the curse of dimensionality in matching process 
(Cheng and Li 2022). By jointly optimizing K values for each individual and mak-
ing confounding adjustments, we develop a novel data-driven optimal K values for 
the K-NN matching method, referred to as DK-NNM.1 Our primary contributions 
are outlined:

•	 We design a sparse learning-based method to reconstruct all samples and iden-
tify the optimal K value for each individual. To the best of our knowledge, our 
work is the first to concurrently learn sparse representations along with feature 
and sample correlations, enabling the determination of optimal K-values for each 
individual in K-NNM methods for causal inference.

Fig. 1   An example is provided 
to illustrate the matching 
method and the limitations of a 
fixed K = 2 in K-NNM

1  This manuscript is an expanded version of our recent conference paper, cited as Xu et al. (2023). In 
this version, we have significantly revised and enhanced the content to include in-depth discussions on 
the motivation and technical foundations of the DK-NNM method. Additionally, we provide a rigorous 
theoretical analysis of the sparse representation learning process, further substantiating our DK-NNM 
method. To comprehensively evaluate the effectiveness of DK-NNM in estimating causal effects, we 
have also incorporated new experiments, particularly those that use synthetic datasets, to complement the 
original analyses and offer a greater validation of the performance of the DK-NNM method.
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•	 To mitigate confounding bias caused by high-dimensional covariates, we 
employ both prognostic and propensity scores to effectively reduce covariate 
dimensionality. Using these strategies, we propose a novel K-NN matching 
method, the DK-NNM method, for casual inference.

•	 The DK-NNM approach is evaluated using both synthetic datasets and real-
world data. Experimental analysis demonstrates DK-NNM’s effectiveness 
and efficiency, highlighting its notable advantage over existing methods for 
causal effect estimation.

2 � Related work

There are two famous frameworks to address the confounding bias caused by 
covariates, i.e., the potential outcome framework (Rubin 1974) and the struc-
tural causal model (Pearl 1995). Our proposed method, DK-NNM, is conceived 
within the potential outcome framework. Subsequently, we conducted an in-
depth review of prior literature relevant to our proposed DK-NNM method.

In practical applications, matching methods play a crucial role in causal infer-
ence by aiming to identify groups with comparable or balanced covariate dis-
tributions (Stuart 2010). The concept of optimal matching involves selecting 
matches by minimizing a global distance metric across all possible pairs (Gu 
and Rosenbaum 1993). Building on this concept, Rosenbaum (2017) introduced 
minimax and quantile constraints for dimensionality reduction. Rubin (1973) 
further contributed by proposing propensity score matching (PSM), which pro-
jects all covariates into a single dimension. Imbens (2004) refined this approach 
by adding regression adjustment. Diamond and Sekhon (2013) advanced these 
methods with GenMatch, which optimizes covariate balance by learning weights 
for covariates, building on both PSM and Mahalanobis distance matching. Addi-
tionally, Rubin and Thomas (2000) integrated propensity scores for prognostic 
covariates, underscoring the effectiveness of considering prognostic factors to 
reduce bias. Later simulation studies by Leacy and Stuart (2014) highlighted the 
advantages of combining propensity and prognostic scores to improve the qual-
ity of matching methods.

The most relevant work to our study is K-Nearest Neighbor Matching 
(K-NNM). The standard K-NNM method Rubin (1974) is widely used, with 
subsequent advancements enhancing its capability for estimating causal effects. 
Luna et  al. (2010) proposed two resampling strategies to improve estimation 
accuracy in K-NN matching estimators. Wager and Athey (2018) introduced a 
tree-based K-NN approach using random forests to determine weights for neigh-
boring observations, conceptualized as an adaptation of K-NN with an adap-
tive neighborhood metric. However, these methods uniformly use a fixed K 
value. When confronted with intricate scenarios, such as substantial differences 
between individuals, the adoption of a fixed K value may result in considerable 
deviations in causal effect estimation.
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3 � Background

We use the potential outcome framework as our basic model (Imbens and Rubin 
2015). We consider the binary treatment variable Ti , where samples receiving treat-
ment ( Ti = 1 ) are referred to as treated samples, whereas those not receiving treat-
ment ( Ti = 0 ) are termed control samples. We use X to represent a set of pre-treat-
ment covariates, which include Pa(T) and Pa(Y). This assumption ensures that X 
contains only relevant confounders, so there are no irrelevant noise variables. The 
observed outcome for sample i is denoted by Yi . Here, Yi(1) and Yi(0) represent the 
potential outcomes for sample i if assigned to the treated group and the control 
group, respectively. Thus, the pair (Yi(1), Yi(0)) capture the potential outcomes for 
each sample. In real-life case, only one of Yi(1) and Yi(0) can be observed for an indi-
vidual. This limitation presents the primary challenge in causal inference.

In the field of causal inference, a very important objective is to infer the impact 
of the treatment T on its outcome Y of interest using observational data. We aim to 
estimate the Average Treatment Effect (ATE) and the Average Treatment Effect on 
the Treated group (ATT). Their definitions are described as:

We also consider to use the propensity score, denoted as e(X) Rosenbaum and Rubin 
(1983) and is defined as.

Moreover, the prognostic score, denoted as p(X) , has also been used in treatment 
effect estimation (Aikens et al. 2020). The prognostic score represents the baseline 
‘risk’ associated with each individual and defined as follows.

In causal inference, the following three assumptions are commonly made for ensur-
ing that the causal effect can be estimated using observational data.

Assumption 1  (Stable individual Treatment Value Imbens and Rubin 2015) In data, 
it is assumed that the potential outcome in one individual is not affected by the spe-
cific treatment assignment in another individual. And there are no latent versions of 
the treatment leading to different potential outcomes for each individual.

Assumption 2  (Overlap Imbens and Rubin 2015) Each individual owns a non-
zero probability to receive either treatment or control, given the covariates X , i.e., 
0 < P(T = t ∣ X) < 1 for t = 0, 1.

Assumption 3  (Unconfoundedness Ye et  al. 2021) The potential outcomes 
(Y(0), Y(1)) are conditionally independent of T  given X , i.e., T ⟂ (Y(0), Y(1)) ∣ X.

(1)ATE =E[Yi(1) − Yi(0)]

(2)ATT =E[Yi(1) ∣ T = 1] − E[Yi(0) ∣ T = 1]

(3)e(X) = P(T = 1 ∣ X)

(4)p(X) = E[Y ∣ X]
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4 � DK‑NNM

In this section, we propose the DK-NNM method for causal effect estimation. DK-
NNM first uses the local structure of X to learn a personalized K value for each indi-
vidual, ensuring adaptive and flexible neighbor selection. Then, DK-NNM performs 
matching based on propensity scores and prognostic scores, which are estimated using 
the treatment (T) and outcome (Y), respectively. These two scores project the high-
dimensional covariates into a low-dimensional space, effectively eliminating confound-
ing bias introduced by high-dimensional covariates while also improving estimation 
accuracy by incorporating information from both the treatment and the outcome.

4.1 � Determine the optimal K value

The idea of dynamically selecting the number of neighbors K in our matching 
method is conceptually similar to the strategy of adaptive bandwidth selection in 
kernel regression. In kernel regression, the smoothing parameter is dynamically 
adjusted based on local data density, allowing the bandwidth h for each sample, thus 
effectively balancing the bias-variance, which has been proved to be effective in 
several studies (Copeland 1997; Loader 1999). The DK-NNM method uses sparse 
learning to construct neighborhoods and adaptively selects matching samples K per 
sample based on the data neighborhood structure to optimize the quality of matching 
samples and reduce the bias in causal effect estimation. This connection provides a 
strong theoretical motivation for our proposed adaptive matching method.

The sparse representation learning through self-representation is proposed to 
reconstruct the space of X ∈ ℝn×d , where d and n stand for the numbers of covari-
ates and samples, respectively.

The representation of the sample xj in the linear model is expressed as 
xj = xizi + �i , where zi represents the dictionary coefficients for the sample xi , and 
�i is the error term associated with this representation. The goal of this self-repre-
sentation is to minimize the reconstruction error, as detailed in prior studies (Zhu 
et al. 2014; Zhang and Cheng 2018). The primary objective is to derive a coefficient 
matrix Z . To achieve this goal, we learn self-representation set Z by using the least 
squares loss function:

where Z ∈ ℝn×n is the reconstructed representation matrix.
Expanding on Eq. (5), the expression for Z is derived as Z = (XT

X)−1XT
X . How-

ever, in practical scenarios, the matrix XT
X may not be invertible. To circumvent 

this issue, we introduce an �2−norm regularization term, to mitigate the problem of 
invertibility. As a result, we can reformulate the loss function:

where � is a tuning parameter and ‖Z‖2
2
 represents the �2−norm regularization.

(5)min
z

n�
i=1

(xizi − xj)
2 = min

Z

‖XZ − X‖2
F
,

(6)min
Z

‖XZ − X‖2
F
+ �‖Z‖2

2
,
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Equation (6) can be solved in a closed form as Z = (XT
X + �I)−1XT

X , where 
I ∈ ℝn×n is an identity matrix. Nevertheless, numerous studies have shown that 
this solution, Z , lacks sparsity.

To identify the optimal K value for each sample, our goal is for each sam-
ple to be represented by those individuals exhibiting strong correlations with it. 
Additionally, we aim to compress the coefficients of individuals with weak cor-
relations to zero. Hence, in our method, we use �1−norm to replace �2−norm, a 
modification proven to induce sparsity Zhu and Li (2016), and we have:

where ‖Z‖1 is the �1−norm regularization, ensuring each value in Z remains non-
negative, as indicated by Z ⩾ 0 . The parameter � acts as the tuning parameter for the 
�1−norm, playing a critical role in governing the sparsity level of Z . A higher value 
of � leads to increased sparsity within the matrix.

To adapt our algorithm to complex high-dimensional data, we integrate a non-
linear dimensionality reduction technique, i.e., Locality Preserving Projections 
(LPP) (He and Niyogi 2003). Unlike variance-based methods such as Principal 
Component Analysis (PCA), which emphasize global structure, LPP focuses on 
preserving local geometric relationships in the data. This ensures that samples 
with similar covariate patterns remain close in the transformed space, improving 
the stability of nearest-neighbor selection in high-dimensional settings.

LPP is formally defined as: �(Z) = Tr(ZT
X

T
LXZ) , where L ∈ ℝd×d is the Lapla-

cian matrix, capturing local feature similarities. The Laplacian matrix is constructed 
as: L = D − S , with S ∈ ℝd×d representing sample-wise similarities and D as the 
diagonal degree matrix. By embedding the data into a locally structured space, LPP 
enhances the robustness of the sparse representation step, reducing noise sensitivity 
and ensuring that neighbor selection remains reliable for causal inference.

Taking all these elements into account, our ultimate objective function is for-
mulated as:

where the tuning parameter � is to balance between �(Z) and ‖XZ − X‖2
F
.

To prevent underfitting due to excessive regularization, we adhere to the com-
mon practice in sparse representation learning by setting the parameters � and 
� within the empirical range of 10−3 ∼ 10−6 . This range has been extensively 
utilized in studies on sparse optimization and graph-based learning (Zhou et al. 
2003). Research indicates that when regularization parameters fall within this 
interval, they effectively constrain noise while balancing the sparsity of neighbor-
hood structures (Wright et al. 2010). Within this range, we employ a grid search 
combined with cross-validation to identify the optimal parameter values. The 
search set is defined as {�, �} ∈ {10−3, 10−4, 10−5, 10−6}.

Upon the successful optimization of (8), we obtain the optimal solution Z∗ . 
Each element zij quantifies the relative contribution of sample j in reconstructing 

(7)min
Z

‖XZ − X‖2
F
+ �‖Z‖1,Z ⩾ 0,

(8)min
Z

1

2
‖XZ − X‖2

F
+ �‖Z‖1 + ��(Z),Z ⩾ 0,
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sample i, thereby capturing the intrinsic correlation between observations. To 
ensure the consistency and plausibility of these relationships, we enforce con-
straints on Z within the optimization formulation. Non-negativity constraint: 
Z ⩾ 0 ensures that each element zij ∈ [0, 1] . Z represents the correlation between 
the ith and jth samples. Specifically, a positive zij (i.e., zij > 0 ) implies a positive 
correlation, indicating that the two samples move in the same direction. Impor-
tantly, a zero value (i.e., zij = 0 ) signifies independence between the samples. 
Since Z∗ is obtained from real data through heuristic optimization, and all ele-
ments in Z∗ are compressed during the sparse regularization process, we do not 
constrain the diagonal elements to be 1, so the diagonal elements are also dynam-
ically determined by the optimization process.

In the context of prediction, this model prioritizes relevance by utilizing only 
those samples that have non-zero coefficients in the matrix Z∗ , as opposed to consid-
ering all available samples. To provide a clearer understanding of how the optimal 
K value is determined for each sample, let’s examine an example with the optimal 
solution Z∗ assumed to be in the space of R5×5:

In the given example with five individuals, we assume that the first two individuals 
are in the treatment group ( T = 1 ), and the remaining three individuals are part of 
the control group ( T = 0 ). Analyzing the first row of the matrix Z∗ , we identify three 
non-zero elements: z11 , z14 , and z15 . This indicates that the first treated individual has 
a correlation exclusively with the fourth and fifth individuals, which are in the con-
trol group. Consequently, the best K value for the first individual is determined to be 
2, based on these correlations.

Similarly, the best K value for the second individual can be identified in the same 
manner. For instance, if the second row of Z∗ indicates a nonzero element with only 
one of the control group individuals, then the best K value for the second treated 
individual would be 1.

This example illustrates how the sparse representation learning of sparse Z∗ ena-
bles the individualized selection of the optimal K value for each individual. This 
tailored method ensures more precise and potentially more effective matching for 
causal inference.

The learned K values provide insight into how the model adapts to the local data 
structure, ensuring personalized and context-aware matching. In the example above, 
the sparse coefficient matrix Z∗ serves as a learned similarity measure, where each 
row identifies the most relevant matches for a given individual. Nonzero elements 
in Z∗ indicate a strong correlation between two samples, and the count of these ele-
ments determines the optimal K for that individual.

A smaller K value suggests that the individual has only a few highly relevant 
matches in the control group, indicating that the local data distribution is dense and 

Z
∗ =

⎛
⎜⎜⎜⎜⎝

0.7 0 0 0.3 0.6

0 0.8 0 0.4 0

0 0 0.3 0 0.2

0.3 0.4 0 0.5 0

0.6 0 0.2 0 0.8

⎞⎟⎟⎟⎟⎠
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homogeneous. Conversely, a larger K value suggests that the individual resides in 
a more heterogeneous region, requiring a broader set of neighbors to achieve stable 
causal effect estimation. By dynamically adjusting K, our method ensures that each 
treated unit is matched with the most relevant control samples while avoiding arbitrary 
parameter selection.

4.2 � Solving our objective function

Note that our objective function at Eq. (8) is convex function, but non-smooth, so we 
employ an accelerated proximal gradient method to solve it. We first perform the fol-
lowing accelerated proximal gradient operations on the objective function (8):

where the objective function (8) is convex and differentiable.
Therefore, we use the proximal gradient to optimize Z , and we initially iteratively 

update Z as:

where ⟨., ;.⟩ denotes the inner product operator, �(m) determines the step size at the 
m-th mation, and Z(m) represents the value of Z obtained at the m-th iteration.

By neglecting the terms in Eq. (11) that are independent of Z , it can be rewritten as 
follows.

where U(m) = Z(m) −
∇f (Z(m))

�(m)
 and ��(m)(Z(m)) represent the Euclidean projection of 

Z(m) onto the convex set �(m).
Since Z(m + 1) in each row (i.e., zi(m + 1) ) can be separated, weight updates can be 

performed separately for each row, as shown below,

(9)f (Z) =
1

2
‖XZ − X‖2

F
+ ��(Z)

(10)�(Z) =f (Z) + �‖Z‖1,

(11)Z(m + 1) =arg min
Z

G�(m)(Z,Z(m))

(12)
G�(m)(Z,Z(m)) =f (Z(m)) + ⟨∇f (Z(m)),Z − Z(m)⟩

+
�(m)

2
‖Z − Z(m)‖2

F
+ �‖Z‖1

(13)∇f (Z(m)) =(XXT + 𝛽XLXT)Z(m) − XX̂
T
,

(14)
Z(m + 1) = ��(m)(Z(m))

= arg min
1

2
‖Z − U(m)‖2

2
+

α

η(m)
‖Z‖1,

(15)z
i(m + 1) = arg min

zi

1

2

‖‖‖z
i − u

i(m)
‖‖‖
2

2
+

�

�(m)

‖‖‖z
i‖‖‖1,
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where ui(m) = zi(m) −
∇f (zi(m))

�(m)
 and zi(m) are the i-th row of U(m) and Z(m) , 

respectively.
According to Eq. (15), zi(m + 1) will get a closed-form solution,

where sgn(zi) denotes the sign function.
Additionally, to facilitate the accelerated proximal gradient method in Eq. (16), 

an auxiliary variable V(t + 1) is introduced,

where the coefficient �(m + 1) is typically set as �(m + 1) =
1+

√
1+4�(m)2

2
.

Finally, we present our pseudo-code in Algorithm 1 for optimizing Eq. (8) and its 
convergence theorem. Convergence Theorem 1 follows from the accelerated gradi-
ent descent method introduced by Nesterov in convex optimization (Nesterov 2004). 
This theorem guarantees the convergence of the optimization process, which means 
that during the optimization process, Z gradually approaches the true solution and 
can obtain the optimal solution, making it identifiable under given constraints.

Theorem 1  Let {Z(m)} is a sequence produced by Algorithm 1. For all ∀m ≥ 1 , we 
have the following inequality holding:

where � is a positive predefined constant, L is the gradient Lipschitz constant for the 
function f (Z) in (9), and Z∗ = argmin

Z

�(Z).

The convergence of Theorem 1 illustrates that O( 1

m2
) is the convergence rate due 

to this accelerated proximal gradient method, in which m is the number of iterations 
in Algorithm 1.

(16)z
i∗ = max

{|||z
i||| − �, 0

}
⋅ sgn(zi),

(17)W(m + 1) = Z(m) +
�(m) − 1

�(m + 1)
(Z(m + 1) − Z(m)),

(18)�(Z(m)) − �(Z∗) ≤
2�L‖‖Z(1) − Z

∗‖‖2F
(m + 1)2

,



Data-driven learning optimal K values for K-nearest neighbour... Page 11 of 24  35

4.3 � Matching over two scores

Upon determining the optimal K value for each individual, the K-NNM approach 
is then employed to estimate causal effects from the data. The DK-NNM method 
employs matching techniques to identify control samples with covariate distribu-
tions akin to the treatment samples. The essence of this matching method lies in 
simulating an RCT, where the matched individual serves as the counterfactual 
individual of the given individual.

In our DK-NNM approach, we implement the Mahalanobis distance to assess 
the dissimilarity between pairs of samples in the study. Moreover, a pivotal step 
in our approach involves transforming all covariates into a two-dimensional 
space. This transformation is guided by two key metrics: the propensity score, 
denoted as e(X) , and the prognostic score, represented by p(X) . By doing so, 
we significantly reduce the dimensionality of our data, which is a more efficient 
approach compared to full matching using the entire set of covariates. The combi-
nation of propensity scores, which balance the distribution of covariates between 
the intervention and control groups, and prognostic scores, which reduce random 
variation in the outcome variable, optimizes both covariate balance and outcome 
predictability during the matching process. This results in more comprehensive 
control of confounders and improved accuracy in causal effect estimation (Leacy 
and Stuart 2014). Consequently, these two scores serve as the distance metric in 
our DK-NNM method.

Precisely, for samples i and j characterized by estimated propensity scores 
êi, êj(ê = P(T = 1|x)) , and prognostic scores p̂i, p̂j(p̂ = E[Y|x]) , the Mahalanobis 
distance, rooted in scores, between samples i and j is formally defined as follows:
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where Σ represents the variance-covariance matrix of (ê, p̂)⊤.
Finally, we apply the K-NNM to identify a set of K-nearest neighbours for 

each individual i, which is denoted as JK(i) . The identification of these neigh-
bours is crucial for the matching process. The subsequent step involves:

where Ki denotes the optimally determined value of K for the ith sample, while Ỹi 
represents the imputed outcome for this sample. It is important to note that Ỹi is 
treated as the unobserved potential outcome within the context of this study, also 
known as a counterfactual outcome.

Specifically, for each sample i, the individual causal effect (ICE) is defined 
as the difference between the observed outcome and the imputed counterfactual 
outcome.

For a treated sample Ti = 1 , ICE is calculated as:

For a control sample Ti = 0 , ICE is calculated as:

The Average Treatment Effect (ATE) is then computed by averaging the individual 
causal effects across all samples:

The Average Treatment Effect on the Treated (ATT) is computed by averaging the 
individual causal effects for the treated samples only:

The NT denotes the number of treated samples.

5 � Experiments

We evaluate our DK-NNM method on synthetic, semi-synthetic, and three real-
world datasets to evaluate our method’s effectiveness in causal effect estimation.

(19)d(i, j) =

[(
êi
p̂i

)
−

(
êj
p̂j

)]⊤
Σ−1

[(
êi
p̂i

)
−

(
êj
p̂j

)]
,

(20)Ỹi =
(
2Ti − 1

) 1

Ki

∑
j∈JK (i)

Yj

(21)ICEi = Yi(1) − Ỹi(0)

(22)ICEi = Ỹi(1) − Yi(0)

(23)ATE =
1

N

N∑
i

ICEi

(24)ATT =
1

NT

N∑
i∶Ti=1

ICEi
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5.1 � Experiment setting

The benchmark datasets used in our study include IHDP, Jobs, Cattaneo2, and 
RHC. The IHDP dataset Hill (2011) is characterized by a ground truth generated 
through a synthetic process. The others - Jobs, Cattaneo2, and RHC - are real-
world datasets with empirically documented causal effects in the literature. For 
the Jobs dataset, we aim to estimate the ATT as its empirical ATT is established. 
In contrast, for the other datasets, we aim to estimate the ATE.

To evaluate the efficacy of the proposed method, we employ several metrics: 
Root Mean Square Error (RMSE) calculated as RMSE =

�
1

M

∑M

i=1
(ATEi −

̂ATEi)
2 

or RMSE =

�
1

M

∑M

i=1
(ATTi −

̂ATTi)
2 , Standard Deviations (SD) calculated as 

RMSE =

�
1

M

∑M

i=1
( ̂ATEi − ATEi)

2 , where M=30 represents the number of exper-

iments, and Estimation Bias given by |||( ̂ATE − ATE)∕ATE
||| × 100% . These metrics 

assess accuracy (RMSE), variability (SD), and bias (Estimation Bias) in our esti-
mations, ensuring a comprehensive evaluation of the proposed method.

To illustrate the superiority of our proposed method, we conduct comparisons 
with the estimators listed below: NNM (Nearest-Neighbour matching based on 
Mahalanobis metric Rubin 1973), PSM (Propensity Score Matching with logis-
tic regression Rosenbaum and Rubin 1983), GenMatch (Genetic Matching, a 
weighted matching method learning weights by evolutionary search Diamond 
and Sekhon 2013), BART​ (Bayesian Additive Regression Trees focus on precise 
modeling of the response surface using a nonparametric Hill 2011), CF (Causal 
Forest based on random forest regression for estimating causal effect Athey et al. 
2019), BCF (Bayesian Causal Forest Hahn et al. 2020), and S-LASSO (S-learner 
using LASSO Regression Nie and Wager 2021).

5.2 � Evaluation using synthetic datasets

We generate the synthetic datasets with different sample sizes, i.e., 500, 1k, 
2k and 3k for our experiments. Follow Cheng et  al. (2024), we generate latent 
confounders F, M with Bernoulli distribution. For the observed variables 
X = {x1, x2,⋯ , xp} , it is generated from the latent confounder F with independent 
Gaussian distributions as:

where � is the coefficient.
Then, generating the binary treatment Z with the Bernoulli distribution as the 

following function:

(25)x1, x2,⋯ , xp ∼ N(F, � ∗ F),

(26)Z ∼ Bernoulli(n, 1∕(1 + exp(1 + 0.25 ∗ M + 0.25 ∗ F)))
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Finally, two types of potential outcomes Y are generated to test the robustness of 
the model under various types of data scenarios. The one is a linear function as 
Ylinear = 3 + 5 ∗ Z + 3 ∗ M + 2 ∗ F + � , the other one is a nonlinear function as 
Ynonlinear = 3 + 5 ∗ Z +M + (3 ∗ M + 2 ∗ F) ∗ F + � , where � is an error term.

Based on the above data generation process, we can know the true ITE for each 
sample and ATE over the whole dataset. In our configuration, the true ATE is 5. We 
conducted independent experiments on 30 datasets generated under each condition. 
This approach allows for a robust comparison across varying conditions while main-
taining fairness in the evaluation against the baseline results.

To verify the effect of the DK-NNM’s different components, we add ablation 
studies to the experiments on the synthetic data. By gradually removing or changing 
certain factors, explain our methods more comprehensively and make the research 
more reliable. All experiments of the ablation study are based on DK-NNM, 
including DK-NN (DK-NN method using the sparse matrices to represent causal 
effects), KNNM using a fixed K-values with both propensity and prognostic scores, 
e-KNNM (DK-NNM usingpropensity score only), P-KNNM (DK-NNM using prog-
nostic score only).

5.2.1 � Evaluation on causal effect estimation

We assess the performance of the DK-NNM using estimation bias and standard 
deviation. Table 1 presents the outcomes for linear datasets, while Table 2 displays 
the results for nonlinear datasets.

Results.  Based on the analysis of experimental data, the following insights 
emerge: (1) NNM and PSM methods have large estimation bias and standard 
deviation on different synthetic dataset types because these methods rely on the 
assumption of no confounding and cannot effectively remove confounding fac-
tors. (2) Our proposed DK-NNM method achieves the smallest estimation bias 

Table 1   Estimation bias 
(standard deviation) across 30 
separate runs on synthetic data 
using Y

linear
 . The best results are 

bold-faced

Method Sample size

500 1K 2K 3K

NNM 17.79 (0.56) 16.77 (0.43) 18.81 (0.34) 14.77 (0.38)
PSM 24.61 (0.63) 19.00 (0.36) 22.13 (0.30) 19.28 (0.31)
GenMatch 10.58 (0.64) 8.01 (0.50) 8.41 (0.41) 7.13 (0.36)
BART​ 17.22 (0.83) 8.25 (0.46) 6.47 (0.42) 5.22 (0.29)
CF 8.40 (0.48) 7.55 (0.42) 6.29 (0.38) 5.23 (0.30)
BCF 8.01 (0.52) 7.23 (0.34) 6.37 (0.42) 5.28 (0.30)
S-LASSO 9.56 (0.54) 6.96 (0.34) 7.13 (0.26) 5.32 (0.27)
DK-NN 37.23 (0.06) 37.89 (0.04) 36.13 (0.03) 37.55 (0.03)
KNNM 11.81 (0.71) 5.67 (0.31) 6.61 (0.27) 5.23 (0.29)
e-KNNM 10.79 (0.69) 5.77 (0.35) 6.61 (0.25) 5.48 (0.28)
p-KNNM 10.75 (0.67) 5.56 (0.35) 7.11 (0.29) 5.22 (0.27)
DK-NNM 5.01 (0.36) 4.87 (0.31) 5.84 (0.22) 4.86 (0.25)
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and standard deviation among all methods for both types of synthetic datasets, 
especially on nonlinear datasets. This indicates that our approach is adaptable to 
more complex data situations. (3) The experimental results of the BART, CF and 
BCF methods show that the larger the sample size, the smaller the estimation 
bias. However, our analysis, alongside previous research, shows that our method 
does not follow this trend. In large sample scenarios, k-nearest neighbor match-
ing can become more sensitive to noise, potentially leading to overfitting issues. 
(4) In the ablation studies, the DK-NN method, which computes the causal effect 
solely from the K-nearest neighbors in a sparse matrix, exhibited a smaller stand-
ard deviation but a larger estimation bias due to the lack of debiasing with two 
scores. Although the other ablation methods yielded results comparable to those 
of the comparison methods, none matched the superior performance of the DK-
NNM method

Consequently, the matched neighbours might not accurately reflect the true causal 
relationships within the actual distribution. Nevertheless, our method exhibits out-
standing performance with small sample data, underscoring its significant contribu-
tion to real-world scenarios where sample sizes are limited.

5.2.2 � Time cost of all methods

We have stored the average computation time for all methods when applied to syn-
thetic datasets. These results are depicted in Fig. 2a and b, providing a visual com-
parison of the time efficiency across different methods.

Results. The BCF and GenMatch methods require particularly high processing 
times. In comparison, our proposed DK-NNM method demonstrates lower time con-
sumption relative to the other methods.

Table 2   Estimation bias 
(standard deviation) across 30 
separate runs on synthetic data 
using Y

nonlinear

The best results are bold-faced

Method Sample size

500 1K 2K 3K

NNM 31.81 (0.44) 27.23 (0.22) 22.55 (0.23) 22.30 (0.18)
PSM 29.75 (0.63) 22.49 (0.37) 21.81 (0.36) 24.65 (0.30)
GenMatch 5.39 (0.30) 4.03 (0.25) 3.58 (0.22) 3.14 (0.18)
BART​ 4.59 (0.20) 4.11 (0.16) 3.18 (0.10) 3.04 (0.08)
CF 6.25 (0.21) 5.77 (0.18) 5.32 (0.11) 4.19 (0.08)
BCF 4.89 (0.19) 4.37 (0.16) 3.52 (0.11) 3.07 (0.09)
S-LASSO 5.24 (0.24) 5.80 (0.17) 6.35 (0.14) 5.73 (0.12)
DK-NN 31.60 (0.08) 34.45 (0.03) 34.35 (0.04) 32.54 (0.03)
KNNM 6.10 (0.27) 6.61 (0.18) 7.93 (0.13) 6.78 (0.12)
e-KNNM 5.11 (0.24) 3.69 (0.12) 3.83 (0.10) 4.62 (0.14)
p-KNNM 5.61 (0.22) 4.01 (0.13) 4.77 (0.10) 6.15 (0.11)
DK-NNM 2.99 (0.22) 1.76 (0.12) 2.00 (0.12) 2.83 (0.14)
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5.2.3 � The study of K values for KNNM against our DKNNM

To fully validate the effectiveness of our DKNNM method, we have designed a 
series of comparison experiments. The main purpose of the experiments is to test 
the performance advantage of our proposed method over the previous KNNM 
method with a fixed K-value for causal effect estimation. We use the previously gen-
erated linear and nonlinear datasets for these experiments, each with a sample size 
of 1000, to ensure both the breadth and reliability of our results. In our experiments, 
we set the K-value at various levels: 1, 5, 10, 15, 20, 25, and 30. For each K-value, 
we conducted 30 independent experiments to mitigate the impact of random errors 
on the data generation.

The experimental results are visualized in Fig. 3a and b. These results demon-
strate that our proposed DKNNM method exhibits lower bias values for both lin-
ear and nonlinear datasets, significantly outperforming the traditional KNNM with 
a fixed k-value. This finding confirms the effectiveness of our method in reducing 
the bias of causal effect estimation across various data structures and complexities, 
thereby improving the accuracy of causal inference. Additionally, we found that the 
fixed k-value approach can lead to overfitting or underfitting in certain scenarios if 

Fig. 2   The average cost time of all methods on the synthetic datasets in different sample sizes

Fig. 3   Estimation bias on synthetic datasets with different K values
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the K-value is not appropriately chosen, consequently increasing the bias in causal 
effect estimation. In contrast, our proposed method with an unfixed k-value avoids 
these issues by adapting more flexibly to the data’s characteristics and automatically 
adjusting the number of matched neighbours.

5.3 � Evaluation using semi‑synthetic datasets

The IHDP dataset constitutes randomized experimental data Hill (2011) originat-
ing by the Infant Health and Development Program (IHDP). Commencing in 1985, 
the IHDP program conducted a trial providing intensive, high-quality childcare and 
home visiting services to low-birth-weight, premature infants. The IHDP dataset 
encompasses 747 samples, with 608 samples assigned to the control group and 139 
samples to the treated group. It incorporates 25 pre-treatment covariates relevant to 
the program, e.g., firstborn status, sex, twin status, and maternal behavior during 
pregnancy and childbirth. Among these variables, 19 are binary covariates, and 6 
are continuous covariates. Following Hill’s procedures Hill (2011), the ground truth 
ATE for the IHDP dataset is determined to be 4.03.

We summarize all methods’ results in Table 3. Additionally, we present the esti-
mated causal effects and their corresponding 95% confidence intervals in Fig.  4. 
Based on Table 3, it’s evident that our DK-NNM method outshines others in terms 
of accuracy in estimating ATE. especially with an extremely small standard devia-
tion relative to other estimators. From Fig. 4, the estimations of GenMatch, BART, 
CF and DK-NNM are all close to the ground truth with a small standard deviation. 
This proves that our proposed DK-NNM is at least competitive with other methods 
on IHDP.

5.4 � Evaluation using three real‑world datasets

5.4.1 � Jobs

Originating from a labor market intervention study, the Job training (Jobs) dataset 
merges the Lalonde experiment’s dataset LaLonde (1986) with additional con-
trol data obtained from the Panel Study of Income Dynamics (PSID) Imai and 

Table 3   Evaluation of causal 
effect estimations on IHDP, 
with the best-performing results 
highlighted

Method ATE RMSE SD

NNM 4.1300 0.1533 0.1645
PSM 3.8352 0.1945 0.1141
GenMatch 4.0002 0.0295 0.1874
BART​ 4.0180 3.5461 0.1192
CF 3.9733 2.7776 0.1019
BCF 3.9724 0.9369 0.9358
S-LASSO 3.8887 0.6956 0.6816
DK-NNM 4.0504 0.0252 0.0145
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Ratkovic (2014). The pre-treatment covariates encompass Years of Education, 
Marital status, Ethnicity, Age, and Proceeds in 1974 and 1975. The treatment T 
is represented by an indicator variable indicating whether the sample participates 
in job training. The outcome of interest is the personal proceeds in 1978. The 
experimental benchmark for this dataset comes from Imai’s study, with an ATT 
of $886 and a standard error of $488 Imai and Ratkovic (2014).

Table  4 presents the results of all methods for estimating ATT on the Jobs 
dataset, visually depicted in Fig. 5. Examination of Table 4 reveals that the esti-
mated ATT closely aligns with the empirical ground truth, exhibiting the smallest 
SD and RMSE. Additionally, as observed in conjunction with Fig. 5, the results 
from the BCF, PSM, and BART methods also approximate the empirical ATT, 
though with higher estimated SDs. This indicates that the DK-NNM estimate is 
not only consistent with reliable results but also features a smaller SD.

Fig. 4   Evaluation of causal effect estimations with a 95% confidence interval on the IHDP dataset. The 
empirical ATE is depicted by a red line

Table 4   Evaluation of causal 
effect estimations on Jobs, with 
the best-performing results 
highlighted

Method ATT​ RMSE SD

NNM 198.16 683.34 1280.70
PSM 638.04 800.78 703.33
GenMatch 1098.50 212.54 1407.50
BART​ 966.60 2133.15 1024.00
CF 335.54 389.40 869.70
BCF 659.47 603.52 559.85
S-LASSO 277.24 2081.98 1992.62
DK-NNM 555.07 331.41 88.94
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5.4.2 � Cattaneo2

The Cattaneo2 Ghosh et  al. (2021), derived from a rich database of singletons in 
Pennsylvania, is frequently employed to investigate the impact of maternal smok-
ing status on baby’s birth weight. The mother’s smoking status, i.e., smoking or 
non-smoking, served as the treatment variable. In this dataset, maternal smoking 
status (smoking or non-smoking) is the treatment variable. It includes 864 treated 
samples and 3,778 control samples, with birth weight as the outcome variable. The 
dataset also incorporates various covariates such as the mother’s age, marital sta-
tus, race, education, and alcohol consumption. A previous study by Almond et al. 
(2005) examined the effects of maternal smoking on birth weight, finding a signifi-
cant negative impact, with infants weighing approximately 200 g to 250 g less than 
the average.

Table  5 presents all methods’ results on Cattaneo2 and they are visualized in 
Fig. 6. DK-NNM yields an estimated Average Treatment Effect (ATE) of -227.96g, 

Fig. 5   Evaluation of causal effects with a 95% confidence interval on the Jobs dataset. The pair of dashed 
lines indicates the empirically estimated interval

Table 5   Evaluation of causal 
effects on the Cattaneo2 and 
RHC datasets, with the best-
performing results highlighted

Dataset Cattaneo2 RHC

 Method ATE SD ATE SD

NNM −276.47 30.10 0.1006 0.0266
PSM −303.97 18.63 0.0481 0.0143
GenMatch −250.64 30.50 0.0671 0.0273
BART​ −273.20 24.87 0.0389 0.0255
CF −224.64 26.50 0.0229 0.0234
BCF −227.08 79.81 0.0298 0.0176
S-LASSO −240.55 87.95 0.0490 0.0810
DK-NNM -227.96 17.53 0.0656 0.0035
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aligning closely with the credible results reported by Almond et al. (2005). Figure 6 
shows that only the estimated ATEs by DK-NNM and CF fall within the empiri-
cally estimated interval (-250  g, -200  g), emphasizing the competitiveness of the 
DK-NNM method.

5.4.3 � RHC

The Right Heart Catheterization (RHC) dataset Connors et  al. (1996) originates 
from an observational study examining the effectiveness of RHC as an initial treat-
ment for critically ill patients. The treatment variable indicates whether patients 
underwent RHC within 24  h of admission, while the outcome variable records 
whether a patient died within 180 days following admission. The dataset includes 
various standard physiological and clinical covariates. Existing study shows that 
using RHC may be associated with higher 180-day mortality rates against not using 
RHC.

Results are compiled in Table  5 and visualized in Fig.  7. The causal effects 
derived from methods such as PSM, GenMatch, BART, CF, BCF, and DK-NNM 
demonstrate consistency. It suggests that the use of RHC is associated with increased 
mortality within 180 days compared with no use of RHC. The concordance of the 
estimates from our method with prior research underscores the DK-NNM’s practi-
cality and reliability.

6 � Conclusion

In our research, the DK-NNM method focuses on reconstructing individuals to pro-
duce a sparse representation matrix. This key strategy is crucial for determining 
the optimal K value for each individual in the K-NNM method. Our study is the 
first to integrate a data-driven approach for discovering K values into K-NNM for 

Fig. 6   Evaluation of causal effect estimations with 95% confidence intervals on the Cattaneo2 dataset. 
The pair of dashed lines indicates the empirically estimated interval (-250 g, -200 g)
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estimating causal effects using observational data, while simultaneously considering 
the neighborhood structure inherent in the data. Our method addresses the issue of 
fixed K values in the traditional K-NNM method. In conventional approaches, the 
value of K is typically determined by the user based on prior experience. In contrast, 
the K value in our algorithm is learned and selected in a data-driven manner. As a 
result, our approach can be applied in scenarios where users are unable to choose an 
appropriate K value based on experience, significantly reducing the time required 
for testing different K values. We also apply two scores to reduce dimensionality and 
mitigate confounding bias, making our approach more suitable for complex datasets 
encountered in real-world applications. We conducted experiments on large datasets 
to highlight our method’s superior performance compared to other matching tech-
niques. These findings suggest the significant potential of DK-NNM in accurately 
estimating causal effects in various settings.

Future work could further explore the scalability and efficiency improvements 
of the algorithm. Although our method effectively reduces the computational bur-
den through sparse constraints and accelerated approximate gradient methods, 
there is still room for improvement. For larger scale applications, data subsam-
pling strategies and distributed computing techniques can be explored to improve 
algorithm performance. These scalability considerations ensure that our approach 
remains computationally feasible for large data sets while maintaining theoretical 
advantages.
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