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Abstract
Contrastive learning has gained significant attention in the field of recommender systems
due to its ability to learn highly expressive representations with limited labels. However, his-
torical user–item interaction data used for recommender systems often contain confounders,
thereby establishing spurious correlations between user preferences and confounders dur-
ing self-supervised training and misleading recommender systems to use these correlations
as shortcuts for generating recommendations. Existing approaches for debiasing usually
involve manually identifying observed confounders, but they are often tailored to specific
situations and overlook latent confounders. To address this challenging problem,we propose a
DeconfoundingGraphContrastive Learning (DeGCL)method to provide deconfounding rec-
ommendations by adjusting for a learned deconfounding representation from interaction data,
using the back-door adjustment strategy. DeGCL learns the representation to capture latent
confounding effects in observational data between users and items. It artificially adds inter-
actions and noise to create contrastive views, which help deconfound the model. By adjusting
for the learned representation, DeGCLmitigates latent confounding effects in training down-
stream recommendation models. Experiments on two real-world datasets demonstrate that
our method outperforms state-of-the-art methods, suggesting its potential to provide more
effective recommendations in practice.

Keywords Recommender systems · Contrastive learning · Causality-inspired machine
learning · Graph neural network

1 Introduction

In the era of information overload, recommender systems have become indispensable tools
[1] that align user interests with relevant content. The utility of these systems extends beyond
just enhancing user experience; they confer significant commercial value to online plat-
forms across domains, including e-commerce [2], social media [3], job matching [4], and
others. However, prevailing recommendation models rely solely on historical user–system
interactions to infer user preferences [4–9]. Problematically, these models presume that all
interaction data objectively indicate a user’s actual preferences for specific items. In reality,
user interactions reflect a confluence of confounders beyond innate interests, including sit-
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Fig. 1 Two causal graphs are utilised to illustrate the differences between conventional recommendation
models (a) and the proposed DeGCL (b). In both graphs, the representation of users and items is considered
as the treatment (denoted as T ), while the feedback from users is regarded as the outcome (Y ). W denotes
the latent confounders. To address the latent confounding effects in a recommender system, we propose a
learnable representation to absorb these confounding effects and satisfy the back-door adjustment criterion

uational contexts, external nudging, and unintentional biases. Consequently, models based
solely on interaction data risk perpetuating these biases, leading to recommendations that
may not accurately align with users’ actual needs.

In order to address bias in recommendation scenarios, the most intuitive method would be
to adopt the idea of randomised controlled trials (RCT) [10], which involves making multiple
recommendations to users to find their real interests. However, RCT faces significant limi-
tations in real-world applications due to ethical and practical constraints [5, 11, 12]. Hence,
most methods use observational data to establish an effective recommendation system, but
they require researcher expertise to identify influential confounders. Confounders, which
affect both users and items, can distort the relationships between user/item data and the rec-
ommendations made by recommender systems [5, 10, 13]. These confounders are covariates
that result in spurious correlations into model training, often poorly reflecting users’ true
preferences [7, 14]. Therefore, it is vital to identify and address sources of confounding in
interaction data, a point emphasised in prior studies [2, 5, 15].

Causal inference is a statistical framework for identifying and quantifying causal relation-
ships between variables [10]. Recently, causal inference techniques have been widely used
in artificial intelligence systems with promising results [16–19]. It provides powerful tools
to identify and mitigate confounding effects. For a clearer presentation of our method, we
describe causal inference in more detail in Sect. 3. In recommender systems, these methods
often involve using experts’ knowledge to identify specific confounders, such as popularity
[20–22], position [23–25] and exposure [8, 14, 26]. Typically, these methods represent the
relationship between observable confounders (W), user and item representations (T ), and
user feedback (Y ) as represented in a directed acyclic graph (DAG) in Fig. 1a. However,
real-world systems often involve many confounders, some of which are not easily detected
through manual selection. Beyond the ‘observed confounders’ that experts can manually
identify, there are ‘unobserved or latent confounders’. These are difficult to detect or mea-
sure. In real-world systems, the complexity and variability of these confounders make it
impractical to design specific models for each confounder.

In the recommender system, real-world data tend to be limited-labelled and sparse [27].
Since contrastive learning does not rely on labelled data and can make good use of data,
researchers have begun to build contrastive learning-based recommender systems [28–30]
and conduct debiasing studies for certain types of bias [31–33]. However, since historical
interaction data are observational rather than experimental, confounders in the data are often
difficult to pinpoint. Past research has demonstrated the presence of multiple confounders
in historical interaction data, such as exposure bias [34], position bias [35], popularity bias
[31], and conformity bias [36]. However, the effects of these confounders are inconsistent
[37], and the complexity associated with this inconsistency poses a challenge in designing
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Fig. 2 A toy example about latent
confounding effects in
recommender systems

deconfoundingmodels for recommender systems. In particular, under the contrastive learning
paradigm, models are susceptible to distorted understanding due to the influence of latent
confounders during the self-supervision process [38] and misleading recommender systems
to use these correlations as shortcuts for recommendations. Existing contrastive learning
algorithms do not pay attention to latent confounders, which poses additional challenges in
accurately capturing user preferences. To illustrate the negative impact of latent confounders,
we provide a toy example in Fig. 2. In this example, two users display similar historical
interactions. User A clicked on high heels and musical instruments out of interest and on pop
shoes due to their popularity.UserB clicked on shorts and basketball shoes because of interest,
clicked on high heels accidentally, and purchased pop shoes for someone else. Despite the
apparent overlap in historical interactions, recommending similar items to both usersmight be
misguided due to their divergent interests. The components of these interactions are complex
and variable, influenced by numerous latent confounders.

To address the spurious correlations caused by the latent confounders, we propose a
self-supervised learning-based method named Deconfounding Graph Contrastive Learning
(DeGCL). DeGCL is designed to learn a deconfounding representation that absorbs the latent
confounders represented by W, thereby establishing unbiased effects between T (treatment
variable) and Y (outcome variable). The relationships amongW, T and Y are represented in
a direct acyclic graph (DAG), as shown in Fig. 1b. To ensure the learning of an effective and
robust deconfounding representation, we introduce spurious interactions and small noises
into the data to enhance the magnitude and diversity of the confounding effects, respec-
tively. Subsequently, the learned deconfounding representation is employed to adjust for the
confounding effects in the user’s representation and the item’s representation through back-
door adjustment [10]. The detailed definition of back-door adjustment is explained in Sect. 3
“Preliminaries”. Our main contributions are summarised as follows:

• We propose and design a learnable deconfounding representation (denoted by D) to
simultaneously absorb the latent confounding effects in the recommender system, in
order to facilitate the model’s deconfounding through back-door adjustment.

• We propose a deconfounding model based on contrastive learning, named DeGCL, and
design two augmentation strategies to help the model perform better in deconfounding.

• We have conducted extensive experiments on two real-world datasets, and the results
demonstrate the effectiveness of our DeGCL method.

The rest of the paper is organised as follows: We briefly review related work in Sect. 2.
Section3 addresses the preliminaries for causal inference in recommender systems. The
proposed DeGCL method is introduced in Sect. 4. In Sect. 5, we experimentally verify and
analyse the effectiveness of the DeGCL method. Finally, the paper is concluded in Sect. 6.
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2 Related work

2.1 Self-supervised contrastive learning

Recently, researchers have been actively exploring methods to reduce model dependency on
labels due to the high cost of obtaining labelled data in the real world [39–43]. Self-supervised
learning has emerged as a promising approach [28, 44–46], leveraging self-supervised signals
extracted directly from the data to train deep neural networks without manual annotation.
This paradigm has demonstrated remarkable scalability and generalisability across diverse
domains [47, 48].

Contrastive learning has gained significant popularity as one of the most popular self-
supervised learning techniques due to its ability to learn rich semantic representations for
downstream tasks [49, 50]. Contrastive learning aims to uncover meaningful information
within the data. By employing a carefully designed loss function, typically the InfoNCE loss
[51], it brings positive sample pairs closer together in the feature space while simultaneously
pushing negative sample pairs further apart. The success of contrastive learning has been
extensively studied from multiple perspectives [52–54], these studies have confirmed that
contrastive learning serves as an effective means to extract latent information from the data,
revealing valuable insights that might otherwise remain hidden. Wang and Isola [55] empha-
sised alignment and homogeneity as the key to contrastive loss, which was introduced into
graph neural network-based recommender systems by Wang et al. [32]. However, despite
its excellent results, existing studies [56, 57] have demonstrated that contrastive learning
introduces an inductive bias, necessitating efforts to debias contrastive learning methods.

2.2 Graph neural networks in recommender systems

Due to the outstanding performance of graph neural networks (GNNs) on non-Euclidean
data [17, 58–61], researchers have developed numerous GNN-based recommender systems
[62] to capture the intricate interaction relationships within data. For instance, NGCF [63]
and SHT [45] employ GNNs to model the user–item interaction graph, generating node
representations through message propagation. Liu et al. [64] help the model capture user
preferences by reasoning about historical interactions. Recently, GNN-based recommenda-
tions have incorporated techniques to improve representation quality andmitigate biases. The
emergence of self-supervised contrastive learning in recommender systems [46] has notably
addressed the issue of data sparsity. SGL [28] utilises self-supervision to mitigate overfitting
to sparse signals, whileMHCN [44] leverages hypergraphmodelling to comprehend complex
interactions.

Furthermore, MIXGCF [29] synthesises challenging negative samples to cover the latent
space better. DirectAU [32] aligns user and item embeddings for more precise matching,
while mitigating the exposure bias in the recommender system. NCL [30] learns about con-
trastive loss at the semantic level by constructing semantic neighbours. SimGCL [31] shows
noise injection implicitly balances preference distribution. LightGCL [33] augments embed-
dings using singular value decomposition to reduce bias. GraphAug [38] looks at the noise
impact of data augmentation and adaptively adjusts through information bottlenecks. How-
ever, deconfounding methods for the latent confounding effects in graph contrastive learning
recommender systems are not yet available.
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3 Preliminaries

The causal graph is widely used to represent the causal relationships between variables [10].
In this work, we use a directed acyclic graph (DAG), which is a graph containing only directed
edges → with no directed cycles (i.e. no directed path where the start and end points are the
same node), to represent the data generation process. The causal DAG is defined as follows:

Definition 1 (Causal DAG [10]) A causal DAG is a DAG G = (V, E), where V represents
the set of variables and E represents the set of directed edges which capture the direct causal
relationships among the variables.

In causal inference, the treatment variable refers to the intervention or manipulation
applied in a study,with the objective of determining its causal effect on the outcome of interest
[10]. For instance, in a study, the treatment variable could be a medication, a behavioural
intervention, a policy change, or any other form of intervention.

The outcome variable represents the result that we aim to investigate regarding the effects
of the treatment variable [10]. For example, in a study examining the efficacy of a new drug
in reducing blood pressure, the outcome variable would be the degree of blood pressure
reduction.

From the perspective of causal inference, as shown in Fig. 1a, we can conceptualise the
embedding vector (i.e. the representation of users and items) as the treatment variable (T ),
the feedback from users as the outcome variable (Y ), and the confounders asW in the causal
graph. The primary objective of our work is to mitigate the influence of confounders on
the embedding vector. A key component in achieving this is the do-operation [10], which is
defined as follows:

Definition 2 (do−operation [10]) The do-operation, denoted as do(T = t), represents an
intervention where the variable T is forcefully set to the value t . The expression P(Y = y |
do(T = t)) denotes the conditional probability of observing Y = y given that we intervene
to set T to t . This probability measurement isolates the causal effect of the intervention by
excluding the influence of confounders.

In an ideal scenario, we would have both interventional and observational data, allowing
us to directly perform the do-operation. However, historical interaction data are only obser-
vational. As is well-known, Pearl et al. [10] proposed that if a set of variablesW satisfies the
back-door criterion, then the do-operation can be transformed into an expression without the
do-operation. The back-door criterion is defined as follows:

Definition 3 (Back-door Criterion [10]) In a causal graph G, given an ordered pair of vari-
ables (T , Y ), a set of variables W satisfies the back-door criterion concerning (T , Y ) if it
satisfies the following conditions: (1) No node inW is a descendant of T . (2)W blocks every
path between T and Y that contains an arrow into T .

If a set of variables W satisfies the back-door criterion w.r.t., the pair (T , Y ), then the
causal effect of T on Y can be identified by adjusting forW, i.e.
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P(Y = y|do(T = t)) =
∑

W

P(Y = y|do(T = t),W = w)P(W = w|do(T = t)), (1)

=
∑

W

P(Y = y|T = t,W = w)P(W = w|do(T = t)), (2)

=
∑

W

P(Y = y|T = t,W = w)P(W = w). (3)

The back-door adjustment is formulated as the following theorem:

Theorem 1 (Back-door Adjustment) The back-door adjustment formula for estimating the
causal effect of T on Y given the back-door setW is given by

P(Y | do(T )) =
∑

W

P(Y | T ,W)P(W),

where P(Y | T ,W) represents the conditional probability of Y given T and W, and P(W)

is the probability distribution ofW.

The back-door adjustment allows us to condition on a back-door set to mitigate the effects
of confounders. However, in recommender systems, directly adjusting for confounders is
impractical due to the presence of latent confounders. In this work, we propose a novel
causal graph, as illustrated in Fig. 1b for addressing latent confounding bias. In this causal
graph, we aim to design a deconfounding representation, D, to capture information about
both measured and latent confounders. Once learned, the representation D can be used to
effectively achieve back-door adjustment within the recommender system.

4 Methodology

4.1 Overview

Our proposed Deconfounding Graph Contrastive Learning (DeGCL) method is rooted in
the framework of self-supervised learning, which encompasses both the primary supervised
task and a self-supervised learning component. We present the workflow of our DeGCL in
Fig. 3. In the training phase, we concatenate the deconfounding representation with the node
representation and train it by contrastive learning. In the inference phase, the deconfounding
representation at this point has absorbed the latent confounding effect and achieved the
deconfounding of the node representation. The summary of notations is shown in Table 1.

4.2 Construction of deconfounding representations

Existing causal learning methods in recommender systems typically target only a single,
pre-specified confounder [13, 65]. However, real-world environments often contain large-
scale, multivariate confounders, including numerous latent factors that can distort observed
patterns. Recommender systems that do not take into account the influence of latent con-
founders will unconditionally favour recommending items that are similar to those they have
interacted with before, thereby reducing the likelihood that users will encounter content that
broadens their horizons or challenges their existing beliefs. However, due to the existence of
latent confounders, back-door adjustment is not suitable directly for latent confounders and
observed confounders.
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Toaddress this issue,wepropose constructing a deconfounding representation basedon the
causal graph for back-door adjustment. The key objective is to encapsulate the multidimen-
sional latent confounding effects within this representation. We integrate this representation
into our model as an additional input alongside standard user–item data. If the confounder
representation is omitted during testing, predictions are based solely on the deconfounded
user and item embeddings. In this way, DeDCL reduces reliance on spurious correlations
and eliminates the need to identify specific confounding variables.

We initialise the deconfounding representation by constructing random variables for the
user and item representations, respectively. These are then integrated into the original repre-
sentations. Let Ẽ(0)

u and Ẽ(0)
v denote the initial embedding representation of a node, which is

obtained from the original user and item features. We defineD0
u ∼ U(0, 1) andD0

v ∼ U(0, 1)
as random variables for the user and item deconfounding representations, respectively. The
integrated representations are then formulated as

E(0)
u = [Ẽ(0)

u ;D0
u], (4)

E(0)
v = [Ẽ(0)

v ;D0
v], (5)

whereE(0)
u andE(0)

v are the new representations concatenating the original and deconfounding
representations, respectively. Previous work [66] has demonstrated that uniform distributions
allow learned representations to unfold fully in the embedding space, enhancing expressive-
ness. Hence, our DeDCL method, which employs the generation of representations from a
uniform distribution, contributes to the uniformity of these representations

4.3 Enforcing the deconfounding representation to absorb latent confounding
effects

Simply appending a trainable vector to the original features is inadequate for capturing
complex confounding effects, particularly involving latent confounders. It is necessary to
optimise an auxiliary loss function that explicitly updates the deconfounding representation.
Let P(Ŷ ) denote the predicted probability of a user–item match from the recommendation
system. Suppose there exists an debiased embedding, TC ∼ P(T | Y ), which reflects only
the intrinsic user–item preferences unaffected by confounders. Conversely, let TN ∼ P(T |
Y ,W) represent the biased real-world embedding influenced by confounders. A conventional
recommendation system model is typically represented as P(Ŷ | TN ). In order to obtain the
debiased embedding TC , we utilise the deconfounding representation D to achieve the back-
door adjustment of T , i.e. to mitigate the effect of the confounders W . In this case, DeGCL
redefines the outputs as P(Ŷ | TC ). However, D is not guaranteed to completely absorb
the latent confounding effects caused by W, and TC is still marginally biased. To ensure
that D is effectively updated during the training process, we utilise Ldiff to ensure that the
difference between the trained user / item deconfounding representation (D1

u,D
1
v) and the

initial user/item deconfounding representation (D0
u,D

0
v).

Ldiff =
∑

(u,v)∈B

1

N

N∑

n=1

(d1u,n − d0u,n)
2 + 1

M

M∑

m=1

(d1v,m − d0v,m)2, (6)

where N is the number of the items, M is the number of the users, and B is a mini-batch.
Since confounders are embedded in historical interaction data, we can optimise D as a

confounder absorber while training the recommender system on biased data. We introduce
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Fig. 3 Our proposedDeGCLmethod is structured as follows:we concatenate the deconfounding representation
with the representation from the first epoch, and then proceed to incorporate it into subsequent training phases.
The red part of the figure denotes the learned deconfounding representation D. In the inference stage, we
remove D to realise the deconfounding of the node representations

Table 1 The summary of
notations and corresponding
descriptions

Notation Description

Ũ Original user representation

Ṽ Original item representation

D0
u Initialised user deconfounding representation

D0
v Initialised item deconfounding representation

E Node embedding

L Number of layers

Ã Normalised undirected adjacency matrix

B Mini-batch

D1
u Trained user deconfounding representation

D1
v Trained item deconfounding representation

a bias loss function that maximises the correlation between D and the biased prediction
P(Ŷ | TC , TN ,D). Intuitively, this encouragesD to absorb as much of the latent confounding
effects from TN , thereby purging confounders from the embedding. Consequently, D acts as
a ‘vial’ to encapsulate multivariate confounding signals. We adopt a negative approach to the
Bayesian personalised ranking (BPR) loss [67] for learning the deconfounding representation
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in the following form.

Lbias =
∑

(s,i, j)∈B
log

(
σ

(
d1u,s

�
d1v,i − d1u,s

�
d1v, j

))
, (7)

where B is a mini-batch, i and j represent a pair of positive and negative items of user u,
and σ is a activation function. When Lbias is larger, it means that D contains more informa-
tion affecting the recommendation. Therefore, we derive the loss function for learning the
deconfounding representation.

LD = Ldiff + α ∗ Lbias, (8)

where α is a hyperparameter.

4.4 Construction of treatments

To better utilise the limited and sparse historical data, we employ a contrastive learning
paradigm for treatment construction, which is divided into two phases: the training stage and
the inference stage.

Training DeGCL uses LightGCN [62] as the backbone to learn node representations

E = 1

1 + L

(
E(0) + ÃE(0) + . . . + ÃLE(0)

)
, (9)

whereE(0) represents the initial node embedding defined in Sect. 4.2 incorporating the decon-
founding representation, L is the number of layers, and Ã is the normalised undirected
adjacency matrix of historical interaction data.

While we assume that there must be potential confounders in real-world data, we do
not discern which interactions originate from causality and which from non-causality. To
address this issue, we devise an interaction enrichment method that introduces unknown
latent confounders into the data. Given that a significant disparity in node degrees within
graph neural networks can result in bias against low-degree nodes, our approach prioritises
these nodes. Specifically, for nodes in the posterior ϕ% by degree (with the size of n), we
randomly create connections with nodes of degree less than φ, repeating this process n times
to obtain a new adjacency matrix A′. The specific steps of the algorithm are presented in
Algorithm 1.

We use the new adjacency matrix A′ generated by Algorithm 1 to train the embeddings

EInter = 1

1 + L

(
E(0) + Ã′E(0) + . . . + Ã′LE(0)

)
. (10)

On the other hand, noise perturbations are often encountered in real-world recommender
systems due to the inherent diversity and randomness of user behaviour. We add a small
amount of noise to the node representation to serve as the second data augmentation method.
This provides enough diversity for model training and ensures model robustness. It is per-
formed from features to form a contrastive loss LFeat, and throughout the training process,
we introduce a very small amount of random uniform noise

� = ω � sign (ei ) , ω ∈∼ U (0, 1), (11)

123



G. Zhang et al.

Algorithm 1 Adding spurious interactions
Require: Graph adjacency matrix A, Low-degree threshold φ, sampling ratio ϕ%
Ensure: Updated graph adjacency matrix A′
1: N ← number of nodes in A
2: D ← degree of each node in A
3: n ← 
ϕ% · N�
4: V ′ ← top n nodes by degree in A
5: A′ ← copy of A
6: for i ← 1 to n do
7: for j ← 1 to n do
8: v ← V ′[ j]
9: Dless ← {u ∈ V ′ : D[u] < φ}
10: u ← randomly select a node from Dless
11: A′[u][v] ← 1
12: A′[v][u] ← 1
13: end for
14: end for
15: return A′

whichmakes� and ei still have the same tendency, ||�| |2 = ξ and ξ is a very small constant.
From this, we can obtain a feature-level representation for data augmentation as follows:

EFeat = 1

1 + L

(
E(0) +

(
ÃE(0) + �(1)

)
+

(
Ã

(
ÃE(0) + �(1)

)
+ �(2)

)
+ . . .

+
(
ÃLE(0) + ÃL−1�(1) + . . . + Ã�(L−1) + �(L)

)) (12)

This can be understood in the real world as follows: when the user or item is affected by a
certain factor (e.g. weather or brand ambassadors), the user’s interaction with the item seems
to change accordingly. Contrastive loss (InfoNCE [51]) is used to align these differently
enhanced representations in the following form.

Lcl =
∑

i∈B
− log

exp
(
z′�
i z′′

i /τ
)

∑
j∈B exp

(
z′�
i z′′

j/τ
) , (13)

where z′ and z′′ are representations of nodes i, j in batch B from augmented graphs, respec-
tively, and τ is temperature. When the loss is computed for the original graph with different
augmentations, Lcl is made LInter and LFeat, respectively. For the recommendation loss, we
use BPR loss [67] to measure the quality of recommendations in the following form.

LBPR = −
∑

(u,i, j)∈B
log

(
σ

(
eu�ei − e�

u e j
))

, (14)

where B is a mini-batch, e j is a randomly sampled item, and σ is a activation function.
This framework synergistically combines graph convolution, noise injection, and edge

augmentation to learn the representation D, and the final loss of DeDCL is defined as

Lmain = LBPR + LFeat + LInter. (15)

Inference With Eq. 6 and Eq. 7 in the training stage, D1 absorbs the latent confounding
effect well. Therefore, we use the initialised D0 instead of D1 in the inference stage, i.e.
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we use a very small uniform noise to simulate the unbiased environment, so as to mitigate
the latent confounding effect in the representations and achieve the intended purpose of the
model.

5 Experiments

5.1 Experimental setup

5.1.1 Datasets

We validate the performance of DeGCL on two real-world benchmark datasets: MovieLens-
1M [68] 1 and Yelp2018 [63]. TheMovieLens-1M dataset contains 575,281 interactions with
3,492 movies by 6,038 MovieLens users, with a density of 0.0273. The Yelp2018 dataset
includes 1,561,406 interactions involving 3,668 Yelp users across 38,048 products, with a
density of 0.0013. For rigorous evaluation, we split both datasets into training, validation,
and test sets in a 70/10/20 ratio. To ensure objective comparison, we report the average of
five runs for all our experiments.

5.1.2 Baselines

Given that our proposed DeGCL is developed using the self-supervised graph contrastive
learning approach, we compare it against the state-of-the-art methods that also utilise self-
supervised graph contrastive learning for recommendations. Thebaselines for our comparison
include:

• LightGCN [62] implements an efficient graph convolutional network using simple aggre-
gators.

• SGL [28] introduces self-supervised learning for graph neural network methods, which
in turn changes the data sparsity problem.

• MIXGCF [29] proposes a method to synthesise difficult negative samples in continuous
space to obtain richer information.

• NCL [30] learns about contrastive loss at the semantic level by constructing semantic
neighbours.

• SimGCL [31] adds uniformity to the model by using uniform noise as data augmentation,
while mitigating the popularity bias in the recommender system.

• DirectAU [32] optimises the learning objectives in terms of both alignment and unifor-
mity thus improving the representation quality, while mitigating the exposure bias in the
recommender system.

• LightGCL [33] improves the data sparsity and popularity bias problem by using singu-
lar value decomposition for augmentation, while mitigating the popularity bias in the
recommender system.

• GraphAug [38] denoises the data augmentation information and then adaptively adjusts
the contrastive view based on the information bottleneck.

1 https://grouplens.org/datasets/movielens/1m/.
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Table 2 Performance of DeDCL in comparison with state-of-the-art methods on the MovieLens-1M dataset

Method Recall@10 NDCG@10 Recall@30 NDCG@30 Recall@50 NDCG@50

LightGCN 0.14752 0.26594 0.22636 0.27332 0.36743 0.28914

SGL 0.17369 0.29595 0.31609 0.30312 0.41035 0.33544

MIXGCF 0.17159 0.29768 0.32545 0.30673 0.42049 0.33044

NCL 0.16210 0.28612 0.31369 0.29668 0.40741 0.32326

SimGCL 0.17169 0.29586 0.32842 0.30839 0.42522 0.33632

DirectAU 0.16516 0.26177 0.30408 0.28252 0.39242 0.30772

LightGCL 0.15989 0.28237 0.30685 0.29210 0.40082 0.31861

GraphAug 0.17034 0.29095 0.32883 0.30633 0.42761 0.33502

DeGCL 0.17747 0.30360 0.33727 0.31607 0.43263 0.34362

The best results in the table are bolded, and the runner-up results are underlined

5.1.3 Evaluation metrics

We evaluate recommendation performance using two standard metrics: Recall@K and
NDCG@K . These metrics examine the quality of top-K item suggestions for each user.
Specifically, Recall@K measures the fraction of test set user–item interactions that are
retrieved in the top-K recommendations, thereby evaluating the model’s ability to recover
ground truth interactions. On the other hand, NDCG@K balances the relevance of recom-
mendationswith their rank position, assigning higher scores to hits at top ranks, thus assessing
how effectively a model prioritises items that users are likely to prefer. We calculate both
metrics at varying K values of 10, 30, and 50, providing a comprehensive view of the model’s
performance across different sizes of recommendation lists. A smaller K value assesses pre-
cision in the most highly ranked items, while a larger K value evaluates the model’s ability
to generate a broader set of relevant suggestions.

5.1.4 Hyperparameters

For a fair comparison, we optimise all models using the same experimental protocol. We
initialise hyperparameters based on values reported in original papers when available or
strong defaults from prior work otherwise. Specifically, we use a hidden dimension of 64with
Xavier normal initialisation, theAdamoptimiserwith learning rate 10−3, graph convolutional
layers of 4, L2 regularisation of 10−4 and the batch size of 2,048.We tune the deconfounding
loss ratio α via grid search, selecting 0.2. All implementations are trained for 500 epochs
with early stopping based on validation Recall@50 and NDCG@50.

5.2 Performance comparison

In this paper, all self-supervised graph contrastive learning methods are evaluated using
LightGCN as a baseline. Based on the results in Tables 2 and 3, we have the following
observations:

• All self-supervised graph contrastive learning methods effectively improve LightGCN
under various settings. LightGCN, which relies solely on the graph convolution of
observed user–item interaction graphs for representation, may overfit sparse signals from
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Table 3 Performance of DeDCL in comparison with state-of-the-art methods on the Yelp2018 dataset

Method Recall@10 NDCG@10 Recall@30 NDCG@30 Recall@50 NDCG@50

LightGCN 0.02857 0.03253 0.06865 0.04771 0.09918 0.05879

SGL 0.03897 0.04438 0.08983 0.06338 0.12820 0.07729

MIXGCF 0.04110 0.04682 0.09467 0.06677 0.13294 0.08054

NCL 0.03917 0.04459 0.09001 0.06366 0.12895 0.07776

SimGCL 0.04178 0.04835 0.09437 0.06723 0.13297 0.08156

DirectAU 0.04180 0.04827 0.09445 0.06770 0.13315 0.08175

LightGCL 0.03786 0.04332 0.08604 0.06125 0.12346 0.07481

GraphAug 0.03972 0.04501 0.09077 0.06410 0.12927 0.07806

DeGCL 0.04286 0.04891 0.09537 0.06785 0.13655 0.08274

The best results in the table are bolded, and the runner-up results are underlined

historical data. Self-supervised contrastive loss encourages representations that capture
robust user and item semantics, improving generalisation compared to LightGCN’s basic
feature propagation.

• SGL’s structural data augmentation allows the model to identify user interests more
finely based on sparse signals. MIXGCF’s enhanced negative sampling also improves the
ranking of popular items. However, these techniques may overfit historical interactions,
which help understand a user’s neighbourhood, which makes them more adaptable to
situationswith smaller K . However, theymay fail to capture global confounders affecting
long-tailed items, which affects generalisation ability. Semantic enhancement of NCL
shows some advantages, but simple clustering needs to learn causal relationships between
representations well.

• DirectAU demonstrates that better uniformity helps to improve recommendation perfor-
mance, leading to competitive results. Adding uniform noise and uniformly initialised
demixing representations brings uniformity to the model, which is why DeGCL and
SimGCL outperform other models. SimGCL’s strategy of augmenting the data with
uniform noise regularisation is particularly effective for wider recommendations, as evi-
denced by its excellent performance at K = 50. Random noise injection produces
interventions that diversify the causes of user–item interactions, thereby reducing the
impact of spurious correlations.

In a word, our proposed DeGCL achieves the best performance by explicitly mitigating
observed and latent confounding effects when building recommender systems. This vali-
dates the impact of confounders on recommender systems and the need to mitigate these
confounding effects during prediction.

5.3 Ablation studies

To elucidate the contribution of each component in our proposed DeDCL model, we con-
ducted an ablation study by sequentially removing key modules. We first removed the
Interaction Enrichment module (IE) from the contrastive learning process. To verify the
significance of Spurious interactions on the Deconfounding effect (SD), we stopped training
the deconfounding representation through the interaction enrichment module while retain-
ing the contrastive learning. Next, to verify the importance of removing latent confounding
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Table 4 Ablation experiments on
the MovieLens-1M dataset

Variants IE SD DE FA Recall@50 NDCG@50

DeGCL ✔ ✔ ✔ ✔ 0.43263 0.34362

DeGCL-1 ✕ ✔ ✔ ✔ 0.41396 0.32686

DeGCL-2 ✔ ✕ ✔ ✔ 0.41537 0.33761

DeGCL-3 ✔ ✔ ✕ ✔ 0.40562 0.31658

DeGCL-4 ✕ ✕ ✕ ✔ 0.39707 0.32482

DeGCL-5 ✔ ✔ ✔ ✕ 0.37550 0.29986

Table 5 Ablation experiments on
the Yelp2018 dataset

Variants IE SD DE FA Recall@50 NDCG@50

DeGCL ✔ ✔ ✔ ✔ 0.13655 0.08274

DeGCL-1 ✕ ✔ ✔ ✔ 0.13445 0.08164

DeGCL-2 ✔ ✕ ✔ ✔ 0.13433 0.08149

DeGCL-3 ✔ ✔ ✕ ✔ 0.13415 0.08150

DeGCL-4 ✕ ✕ ✕ ✔ 0.12542 0.07992

DeGCL-5 ✔ ✔ ✔ ✕ 0.10561 0.06333

effects, we removed the DEconfounding representation module (DE). Finally, we eliminated
Feature Augmentation (FA) from contrastive learning. With the four ablation measures, we
obtained five variants of the DeGCL model.

As shown in Tables 4 and 5, the removal of interaction enrichment in contrastive learning
leads to a slight decrease in model effectiveness, which indicates that data augmentation from
structure plays a role in facilitating contrastive learning. Moreover, when spurious interac-
tions are no longer employed for training the deconfounding representation, there is a slight
decrease in the model’s effectiveness. This suggests that incorporating random interactions
as a simulation of real-world latent confounders allows the deconfounding representation to
more effectively learn these effects, which is crucial for its functionality.

Further analysis revealed that removing the deconfounding representation significantly
reduces model effectiveness, highlighting the importance of addressing unobservable latent
confounders in complex real-world scenarios. Additionally, when both the interaction enrich-
ment module and the deconfounding representation are removed, the model’s effectiveness
decreases significantly. Interestingly, for the denser MovieLens-1M dataset, the effect of
adding spurious interactions on the training of the deconfounding representation is not as
pronounced as in the Yelp2018 dataset, since the denser dataset itself represents a more
complex confounding scenario. When the feature augmentation is removed, the model’s
effectiveness reaches its lowest level despite the deconfounding of the model. When the
deconfounding representation is trained together with the node representation, the represen-
tations may suffer from the pattern collapse problem, i.e. the generated representations are
too similar and lack diversity. This may lead to a decrease in the quality of the representation
and the inability to make distinctions during predicting.

Overall, the interaction enrichment module is more effective in modelling latent con-
founders, thus achieving the goal of deconfounding and helping to reduce spurious
correlations associated with the condition of treatment progeny. Additionally, the injection
of noise helps to reduce overfitting due to chance. The representations generated by these
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Fig. 4 Parameter sensitivity analysis on the MovieLens-1M dataset

Fig. 5 Parameter sensitivity analysis on the Yelp2018 dataset

modules successfully avoid the effects of latent confounders. Our ablation studies empirically
validate this synergistic effect.

5.4 Parameter sensitivity

We analyse two key hyperparameters controlling DeGCL’s deconfounding and graph
augmentation. The mixing ratio α modulates the deconfounding loss, governing how repre-
sentations absorb latent confounders. The degree limit constrains random edge additions to
avoid distorting the graph. By randomly adding spurious interactions, it amounts to counter-
factually adding the effect of confounders to the interaction data. In this paper, we present
hyperparameter sensitivity analyses on the MovieLens-1M dataset and Yelp2018 dataset.
The results are visualised in Figs. 4 and 5.

Our experiments indicate that anα value of 0.2 optimises performance by adequate debias-
ing without overfitting to spurious artefacts. As highlighted in Pearl’s work on causal graphs
[10], confounders can bias learned representations. DeGCL is designed to eliminate con-
founding while retaining useful latent factors through its deconfounding objective. Higher
values of α tend to make models overly sensitive to augmented interactions, leading to erro-
neous fitting to artificial confounders. The optimal degree limit of 50 suggests that moderate
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graph completion achieves a balance between graph densification and preservation of the
valid structure.

In summary, α and the degree limit act as adjustable parameters to fine-tune the efficacy of
our proposed techniques. When appropriately balanced, DeGCL enhances generalisation by
exposing models to a range of counterfactual relationships not present in the original sparse
graph. However, improper tuning risks contaminating representations if augmentations stray
too far from reality. Therefore, conducting a thorough hyperparameter analysis is essential for
applying data augmentation responsibly. Our carefully tuned configurations demonstrate that
representations can be effectively enriched with fictional connections and confounders while
still maintaining accuracy, provided the augmentation process is controlled meticulously.

6 Conclusions

In this paper, we integrate causal insights into self-supervised graph contrastive learning
for mitigating latent confounding effects in recommender systems. Previous methods only
focus on observed confounders, while ignoring latent confounders. To tackle this issue, we
propose a Deconfounding Graph Contrastive Learning (DeGCL) method. Specifically, we
begin by designing a causal graph to depict the recommendation system under the influ-
ence of confounders. We then develop a deconfounding representation that captures latent
confounding effects and ensures their quality by randomly adding interactions that produce
spurious confounding effects. Finally, we mitigate the impact of confounders on model pre-
dictions by adjusting for the learned deconfounding representation. Comparative and ablation
experiments on two real-world datasets demonstrate the effectiveness of our model and the
essential role of each module.
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