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Abstract

Estimating direct and indirect causal effects from observa-
tional data is crucial to understanding the causal mechanisms
and predicting the behaviour under different interventions.
Causal mediation analysis is a method that is often used to re-
veal direct and indirect effects. Deep learning shows promise
in mediation analysis, but the current methods only assume
latent confounders that affect treatment, mediator and out-
come simultaneously, and fail to identify different types of
latent confounders (e.g., confounders that only affect the me-
diator or outcome). Furthermore, current methods are based
on the sequential ignorability assumption, which is not fea-
sible for dealing with multiple types of latent confounders.
This work aims to circumvent the sequential ignorability as-
sumption and applies the piecemeal deconfounding assump-
tion as an alternative. We propose the Disentangled Mediation
Analysis Variational AutoEncoder (DMAVAE), which disen-
tangles the representations of latent confounders into three
types to accurately estimate the natural direct effect, natural
indirect effect and total effect. Experimental results show that
the proposed method outperforms existing methods and has
strong generalisation ability. We further apply the method to
a real-world dataset to show its potential application.

Introduction
Causal mediation analysis (CMA) aims to reveal how other
attributes mediate the causal effect of a treatment on the
outcome. It can help understand how the mechanism works
and enable outcome prediction under various interventions
in practice. In recent years, CMA has been widely used in
operational decision (Yin and Hong 2019) and policy evalu-
ation (Cheng, Guo, and Liu 2022). For example, in the UC
Berkeley admission process, it was found that female ap-
plicants were more likely to be rejected than male appli-
cants (Bickel, Hammel, and O’Connell 1975). However, in-
vestigators through CMA understood that the choice of dis-
ciplines, as a mediator was affected by gender and affected
the acceptance rate. There was in fact no discrimination be-
cause female applicants preferred to apply for admission
into disciplines with a higher level of competition and lower
acceptance rates.
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Figure 1: (a) A causal graph for the UC Berkeley admission
process example. T denotes gender (treatment), M denotes
discipline choice (mediator), and Y denotes acceptance rate
(outcome). (b) Causal graph for CMAVAE (Cheng, Guo, and
Liu 2022). T denotes treatment, M denotes mediator, Y de-
notes outcome, X denotes proxy attributes and Z denotes
the representation of latent confounders which affect T , M
and Y simultaneously.

The above example illustrates three essential ingredients
of CMA, the natural direct effect (NDE), the natural indi-
rect effect (NIE) and the total effect (TE), respectively. We
use Figure 1a to illustrate the above example in terms of the
three types of effects. Here, TE measures the expected in-
crease in the acceptance rate as gender changes from male to
female; NDE measures the expected increase in acceptance
rate as gender changes from male to female while setting the
discipline choice to whatever value it would have attained
prior to the change (i.e., under gender being male); NIE mea-
sures the expected increase in acceptance rate when gender
is male, and discipline choice changes to whatever value
it would have attained under gender being female (Pearl
2014). To be fair for all applicants, the NDE should be zero
since gender should not directly affect the acceptance rate,
while the NIE is allowed to be non-zero if discipline choice
is considered a non-sensitive attribute.

The major challenge in CMA is latent confounders. In the
above example, an applicant’s economic status affects his
or her discipline choice and acceptance rate, and without
measuring it, we cannot estimate NDE, NIE or TE. Fortu-
nately, leveraging the strength of representation learning, re-
searchers are able to learn the representations of latent con-
founders from other attributes. For example, the representa-
tion of the applicants’ economic status can be learned from
the collected information of their addresses and parental
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Figure 2: The causal graph for the proposed Disentangled
Mediation Analysis Variational AutoEncoder (DMAVAE).
T is the treatment, M is the mediator, Y is the outcome and
X represents the set of the proxy attributes. ZTM , ZTY and
ZMY denote the disentangled representations of the three
types of latent confounders.

information. Deep learning has made significant progress
in representation learning in the past decade. For exam-
ple, Kingma and Welling (2014) proposed Variational Au-
toEncoder (VAE) to learn representations with neural net-
works. Louizos et al. (2017) first combined causal infer-
ence and VAE and proposed CEVAE. CEVAE can learn
the representation of latent confounders and inference in-
dividual treatment effect (ITE) and average treatment ef-
fect (ATE). Zhang, Liu, and Li (2021) proposed TEDVAE,
which disentangles latent representations into three parts to
achieve more accurate estimation of causal effects than CE-
VAE does. However, both CEVAE and TEDVAE do not con-
sider mediator and cannot estimate NDE or NIE.

Cheng, Guo, and Liu (2022) proposed CMAVAE, which
considers mediator and the estimation of NDE and NIE.
It is the first work that combines deep learning and CMA,
and CMAVAE assumes that the latent confounders affect
treatment, mediator and outcome simultaneously as shown
in Figure 1b. Their work extended sequential ignorabil-
ity (Imai, Keele, and Tingley 2010) to representation learn-
ing and used proxy attributes X to learn the representation
of latent confounders. However, CMAVAE has limited gen-
eralisation ability since it does not consider different types
of confounders, which, however, are often seen in practice.
For example, the demand of the job market can be consid-
ered as a confounder that affects M (discipline choice) and
Y (acceptance rate) in Figure 1a, because the popularity of
a job area affects students’ choice of disciplines, the univer-
sity may need to limit the acceptance rate due to the lim-
itation of teaching resources. Furthermore, this confounder
does not affect an applicant’s gender. CMAVAE cannot han-
dle this case since it assumes a confounder that affects treat-
ment (gender in this example), mediator and outcome simul-
taneously.

In this paper, we consider a general case with three types
of latent confounders as shown in Figure 2, where ZTM

is the representation of the latent confounders that affect
treatment and mediator; ZTY is the representation of the
latent confounders that affect treatment and outcome; and
ZMY is the representation of the latent confounders that
affect mediator and outcome. We can access the observed
proxy attributes X and assume that the proxy attributes

and latent confounders are inherently correlated (Angrist
and Pischke 2009). Our proposed disentanglement scheme
in Figure 2 follows the piecemeal deconfounding assump-
tion (Pearl 2014), which is a more relaxed assumption than
sequential ignorability. We propose a novel method, namely
Disentangled Mediation Analysis Variational AutoEncoder
(DMAVAE) to learn the disentangled representations of the
three types of latent confounders as illustrated in Figure 2 by
using a VAE-based approach, for estimating NDE, NIE and
TE. We make the following contributions in this paper:

• We study a general case of CMA under the piecemeal
deconfounding assumption, where there are three types
of latent confounders.

• We propose a novel CMA method, DMAVAE, to learn
the disentangled representations of the three types of la-
tent confounders from proxy attributes to more accu-
rately estimate NDE, NIE and TE.

• We evaluate the effectiveness of the DMAVAE method
on synthetic datasets. Experiments show that DMAVAE
outperforms existing CMA methods and has a strong
generalisation ability. Furthermore, we conduct a case
study to show the application scenarios of DMAVAE.

Background
We use upper case letters to represent attributes and lower
case letters to represent the values of the attributes. We fol-
low the work in (Pearl 2014) to introduce the notations, def-
initions and assumptions.

Notations and Definitions
Let Ti represent the treatment status of the i-th individual,
with Ti = 1 indicating the i-th individual receiving the treat-
ment and Ti = 0 otherwise. We use Mi to represent the
mediator for the i-th individual, Mi(t) for the value of the
mediator when Ti is fixed to t, where t ∈ {0, 1}. Similarly,
Yi is used to represent the outcome of the i-th individual and
Yi(t,m) for the outcome when Ti = t and Mi = m. Fi-
nally, we use Xi to denote the set of proxy attributes. When
the context is clear we omit the subscript i.
Definition 1 (Total Effect (Pearl 2014)).

TE = E[Y (1,M(1))− Y (0,M(0))]. (1)

As stated in (Pearl 2014), TE is the measure of “the
expected increase in the outcome Y when the treatment
changes from T = 0 to T = 1, while the mediator is al-
lowed to track the change in T .”
Definition 2 (Natural Direct Effect (Pearl 2014)).

NDE = E[Y (1,M(0))− Y (0,M(0))]. (2)

Based on (Pearl 2014), NDE is the measure of “the ex-
pected increase in the outcome Y that the treatment changes
from T = 0 to T = 1, while setting the mediator to what-
ever value it would have attained (for each individual) prior
to the change, i.e., under T = 0.”
Definition 3 (Natural Indirect Effect (Pearl 2014)).

NIE = E[Y (0,M(1))− Y (0,M(0))]. (3)
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As explained in (Pearl 2014), NIE is the measure of “the
expected increase in the outcome Y when the treatment is
held constant, at T = 0, and M changes to whatever value
it would have attained (for each individual) under T = 1.”

Additionally, TE can be decomposed as follows:

TE = NDE−NIEr, (4)

where NIEr denotes the reverse version of NIE, as follows:

NIEr = E[Y (1,M(0))− Y (1,M(1))]. (5)

This implies that TE is identifiable whenever NDE and
NIEr are identifiable (Pearl 2014). Note that NDE and NIE
are defined in counterfactual expressions. To allow these
counterfactual expressions to be estimated, Pearl (2014) pro-
posed three steps for the counterfactual derivation of NDE
and NIE: First, we find an adjustment set under suitable
assumptions; Second, we reduce all counterfactuals to do-
expressions by using the adjustment set found; Finally, we
identify the do-expressions from the data.

Assumptions
Assumption 1 (Sequential Ignorability (Imai, Keele, and
Tingley 2010)). There exists a set W of measured attributes
such that:

1. W and T deconfound the mediator-outcome relation-
ship, keeping T fixed: [Y (t′,m)⊥⊥M(t)|T = t,W = w];

2. W deconfounds the treatment-{mediator, outcome} rela-
tionship: [T ⊥⊥ (Y (t′,m),M(t))|W = w],

where 0 < p(M = m|do(T = t,W = w)) < 1, 0 < p(Y =
y|do(T = t,M = m,W = w)) < 1, and t, t′ ∈ {0, 1}.

Pearl (2014) proposed the following assumption, which is
more relaxed than Assumption 1.

Assumption 2 (Piecemeal Deconfounding (Pearl 2014)).
There exists three sets of measured attributes W =
{W1,W2,W3} such that:

1. No member of W1 is affected by the treatment;
2. W1 deconfounds the M → Y relationship (holding T

constant);
3. {W2,W1} deconfounds the T →M relationship;
4. {W3,W1} deconfounds the {T,M} → Y relationship.

We note that Assumption 2 follows the idea of divide-and-
conquer, and allows the use of different sets of attributes to
deconfound the mediator and outcome processes separately,
rather than having to use the same set of deconfounding at-
tributes as required by Assumption 1 (Pearl 2014).

Method
CMA via Representations
As mentioned above, the piecemeal deconfounding assump-
tion is more relaxed than the sequential ignorability assump-
tion. Our goal is to extend the piecemeal deconfounding as-
sumption to disentangled representation learning. For this,
we propose the causal graph for the disentanglement as
shown in Figure 2, and introduce the following assumption
for the disentangled representations.

Assumption 3 (Assumption for DMAVAE).
1. There exist three types of confounders, i.e., ZTM , ZTY

and ZMY as shown in Figure 2.
2. There exist proxy attributes X that approximate ZTM ,

ZTY and ZMY .
3. p(T,M, Y,X,ZTM , ZTY , ZMY ) can be recovered from

all observed attributes (T,M, Y,X).
For our proposed disentanglement, we have the following

theorem.
Theorem 1. The disentangled representation ZMY follow-
ing Figure 2 satisfies Conditions 1 and 2 of Assumption 2.

Proof. ZMY is a non-descendant of T as shown in Figure 2,
hence Condition 1 of Assumption 2 is satisfied (considering
ZMY as W1). All the back-door paths between M and Y
when holding T constant are blocked by ZMY , i.e., M ←
ZMY → Y is blocked by ZMY , M ← ZMY → X ←
ZTY → Y , M ← ZTM → X ← ZTY → Y and M ←
ZTM → X ← ZMY → Y are all blocked by ∅ since X
is a collider. Hence, Condition 2 of Assumption 2 is also
satisfied when considering ZMY as W1.

Based on Theorem 1 and Equation 13 in (Pearl 2014), the
counterfactual expression of NDE (Equation 2) and NIEr
(Equation 5) can be reduced to do-expressions as follows:

NDE = [E(Y |do(T = 1,M = m), ZMY = zMY )

− E(Y |do(T = 0,M = m), ZMY = zMY )]

× p(M = m|do(T = 0), ZMY = zMY )

× p(ZMY = zMY ),

(6)

NIEr = E(Y |do(T = 1,M = m), ZMY = zMY )

× [p(M = m|do(T = 0), ZMY = zMY )

− p(M = m|do(T = 1), ZMY = zMY )]

× p(ZMY = zMY ),

(7)

Following Pearl’s back-door adjustment formula (Pearl
2009a,b), we propose the following theorem which is used
to reduce the do-expressions to probability expressions.
Theorem 2. If we can estimate p(T,M, Y,X,ZTM , ZTY ,
ZMY ) under the causal graph in Figure 2, NDE and NIEr
can be identified from data as follows:

NDE = [E(Y |T = 1,M = m,ZMY = zMY , ZTY = zTY )

− E(Y |T = 0,M = m,ZMY = zMY , ZTY = zTY )]

× p(M = m|T = 0, ZMY = zMY , ZTM = zTM )

× p(ZMY = zMY , ZTM = zTM , ZTY = zTY ),
(8)

NIEr = E(Y |T = 1,M = m,ZMY = zMY , ZTY = zTY )

× [p(M = m|T = 0, ZMY = zMY , ZTM = zTM )

− p(M = m|T = 1, ZMY = zMY , ZTM = zTM )]

× p(ZMY = zMY , ZTM = zTM , ZTY = zTY ).
(9)

Proof. We prove that Equations 6 and 7 can be identified,
i.e., the do-expressions can be converted to the do-free ex-
pressions in Equations 8 and 9, respectively. For this, we
prove that p(M = m|do(T = 0), ZMY = zMY ) and
p(Y = y|do(T = 0,M = m), ZMY = zMY ) are identi-
fiable. The case for T = 1 is identical and the expectation
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Figure 3: The architecture of Disentangled Mediation Analysis Variational AutoEncoder (DMAVAE).

expressions with the do-operators are identifiable when the
corresponding probability expressions are identifiable. Once
NDE and NIEr are identified, TE is calculated as shown in
Equation 4.

p(M = m|do(T = 0), ZMY = zMY ) is identifiable by
adjusting ZTM , since all the back-door paths between T and
M when conditioning on ZMY are blocked by ZTM , i.e.,
T ← ZTM → M is blocked by ZTM , T ← ZTM → X ←
ZTY → Y ← M , T ← ZTY → X ← ZTM → M and
T ← ZTY → Y ← M are blocked by ∅ since X or Y is
a collider. Hence, p(M = m|do(T = 0), ZMY = zMY ) =
p(M = m|T = 0, ZMY = zMY , ZTM = zTM ).
p(Y = y|do(T = 0,M = m), ZMY = zMY ) is iden-

tifiable by adjusting ZTY , since all the back-door paths
between {T,M} and Y when conditioning on ZMY are
blocked by ZTY , i.e., T ← ZTY → Y is blocked by ZTY ,
T ← ZTM → X ← ZTY → Y and M ← ZTM → X ←
ZTY → Y are blocked by ∅ since X is a collider. Hence,
p(Y = y|do(T = 0,M = m), ZMY = zMY ) = p(Y |T =
0,M = m,ZMY = zMY , ZTY = zTY ).

Learning Disentangled Representations
In the previous discussion, we have assumed that X con-
tains (or captures) the information of the latent confounders,
which can be disentangled into three types, i.e., ZTM , ZTY

and ZMY . With these representations, we can estimate NDE
and NIEr by Equations 8 and 9, respectively.

To learn these representations, we propose DMAVAE
based on Variational Autoencoder (VAE) (Kingma and
Welling 2014), which uses variational inference to learn rep-
resentations. DMAVAE parameterises the causal graph in
Figure 2 as a model with neural network functions con-
necting the attributes of interest. The objective function
of DMAVAE is the reconstruction error of the observed
(X,T,M, Y ) and the inferred (X̂, T̂ , M̂ , Ŷ ). The architec-
ture of DMAVAE is shown in Figure 3. We note that Y is
not shown in Figure 3 since Y is not used as an input to the
generative model.

In the inference model, we design three separate encoders
q(ZTM |X), q(ZMY |X) and q(ZTY |X) that serve as vari-
ational posteriors over the three representations. The varia-
tional approximations of the posteriors are defined as:

q(ZTM |X) =
∏DZTM

j=1 N (µ = µ̂TMj , σ
2 = σ̂2

TMj
);

q(ZMY |X) =
∏DZMY

j=1 N (µ = µ̂MY j , σ
2 = σ̂2

MY j
);

q(ZTY |X) =
∏DZTY

j=1 N (µ = µ̂TY j , σ
2 = σ̂2

TY j
),

where µ̂TM , µ̂MY , µ̂TY and σ̂2
TM , σ̂2

MY , σ̂
2
TY are the means

and variances of the Gaussian distributions parameterised by
neural networks. DZTM

, DZMY
and DZTY

are the dimen-
sions of ZTM , ZTM and ZTY , respectively.

The generative models for T and X are defined as:
p(T |ZTM , ZTY ) = Bern(σ(g(ZTM , ZTY )));

p(X|ZTM , ZTY , ZMY ) =
∏DX

j=1 p(Xj |ZTM , ZTY , ZMY ),

where g(·) is a neural network parameterised by its own pa-
rameters, σ(·) is the logistic function and DX is the dimen-
sion of X .

Specifically, the generative models for M and Y vary de-
pending on the types of the attribute values. For continuous
M and Y , the models are defined as:

p(M |T,ZTM , ZMY ) = N (µ = µ̂M , σ2 = σ̂2
M );

µ̂M = (Tg(ZTM , ZMY ) + (1− T )g(ZTM , ZMY ));

σ̂2
M = (Tg(ZTM , ZMY ) + (1− T )g(ZTM , ZMY )),

p(Y |T,M,ZTY , ZMY ) = N (µ = µ̂Y , σ2 = σ̂2
Y );

µ̂Y = (Tg(M,ZTY , ZMY ) + (1− T )g(M,ZTY , ZMY ));

σ̂2
Y = (Tg(M,ZTM , ZMY ) + (1− T )g(M,ZTM , ZMY )),

For binary M and Y the models are defined as:

p(M |T,ZTM , ZMY ) = Bern(σ(g(T,ZTM , ZMY )));

p(Y |T,M,ZTY , ZMY ) = Bern(σ(g(T,M,ZTY , ZMY ))).

Following the same setting in (Kingma and Welling
2014), we choose Gaussian distribution as the prior distri-
butions of the representations, which are defined as:

p(ZTM ) =
∏DZTM

j=1 N (zTMj |0, 1);

p(ZMY ) =
∏DZMY

j=1 N (zMY j |0, 1);

p(ZTY ) =
∏DZTY

j=1 N (zTY j |0, 1).

We can now form the evidence lower bound (ELBO) for
the above inference and generative networks:

M = Eq[log p(X|ZTM , ZTY , ZMY )]

−DKL[q(ZTM |X)||p(ZTM )]

−DKL[q(ZMY |X)||p(ZMY )]

−DKL[q(ZTY |X)||p(ZTY )],

(10)
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where Eq stands for Eq(ZTM |X)q(ZMY |X)q(ZTY |X). The first
term denotes the reconstruction loss between X and X̂; each
of the other terms is used to calculate the KL divergence be-
tween the prior knowledge and the learned representations.

Following the works in (Louizos et al. 2017; Zhang, Liu,
and Li 2021), we design three auxiliary predictors to encour-
age the disentanglement of the representations. To optimise
the parameters in the auxiliary predictors, we add them to
the loss function. Since maximisingM is equal to minimis-
ing −M, the final loss function of DMAVAE is defined as:

LDMAVAE = −M+ logq(T |ZTM , ZTY )

+ logq(M |T,ZTM,ZMY)

+ logq(Y |T,M,ZTY , ZMY ).

(11)

Experiments
Evaluating estimated causal effects has always been a huge
challenge because we have no access to ground truth in prac-
tice (Guo et al. 2020). Evaluating the results of CMA is con-
sidered a more difficult task, as it requires accurate estima-
tion of causal effects with respect to different paths. There-
fore the evaluation of causal effect estimation and CMA
mainly relies on simulated datasets (Huber, Lechner, and
Mellace 2016). Following the works in (Louizos et al. 2017;
Cheng, Guo, and Liu 2022), we construct simulated datasets
to evaluate the performance of DMAVAE and compare it
with the baseline methods. We also evaluate the generali-
sation ability of DMAVAE. Finally, we apply DMAVAE to a
real-world dataset and verify its usability. The code is avail-
able at https://github.com/IRON13/DMAVAE.

Experiment Setup
Methods for Comparison We compare DMAVAE with
traditional and deep learning-based CMA methods. For tra-
ditional CMA methods, we select the commonly used para-
metric methods LSEM (Baron and Kenny 1986), LSEM-
I (Imai, Keele, and Tingley 2010), NEW-I, NEW-W (Lange,
Vansteelandt, and Bekaert 2012), and semi-parametric
method IPW (Robins, Rotnitzky, and Zhao 1994; Huber
2014). For deep learning-based CMA methods, we compare
our method with CMAVAE (Cheng, Guo, and Liu 2022),
which is the only VAE-based CMA method. Since there are
no other deep learning-based CMA methods, we select two
well-known causal effect estimators (CEVAE (Louizos et al.
2017) and TEDVAE (Zhang, Liu, and Li 2021)) as baselines
for TE estimation only.

Evaluation Criterion For evaluating the performance of
DMAVAE and the baselines, we use the estimation bias
|(β̂ − β)/β| × 100% as the metric, where β̂ is the estimated
results and β is the ground truth.

Implementation Details We use PyTorch (Paszke et al.
2019) and Pyro (Bingham et al. 2018) to implement
DMAVAE. For LSME and LSME-I, we use their implemen-
tations in R package “mediation” (Tingley et al. 2014). For
NEW-I and NEW-W, we use their implementations in the R
package “Medflex” (Steen et al. 2017). For IPW, we use the
implementation in the R package “causal-weight” (Bodory

and Huber 2018). CEVAE1 and TEDVAE2 are open-source
on GitHub, and CMAVAE is implemented in Pyro and Py-
Torch by us.

Performance Evaluation
We firstly generate synthetic datasets based on the causal
graph in Figure 2 (hence we know the ground truth) to eval-
uate the performance of our methods, in comparison with
the baselines. We follow the same procedure in (Louizos
et al. 2017; Cheng, Guo, and Liu 2022) to generate synthetic
datasets with a variety range of sample sizes (denoted as N):
2k, 3k, 4k, 5k, 6k, 7k, 8k, 9k and 10k.

To avoid the bias brought by data generation, we repeat-
edly generate 30 datasets for each sample size. The results
for the mean and the standard deviation of estimation bias
for NDE, NIEr and TE are shown in Table 1.

Results DMAVAE achieves the lowest estimation bias in
both NDE and NIEr compared with the baseline methods
as shown in Tables 1a and 1b. We note that DMAVAE per-
forms clearly better than CMAVAE under the current data
generation mechanism. A possible explanation is that since
there are three types of latent confounders, but CMAVAE
only learns one type of representation. As we mentioned
above, different adjustment sets are needed for different esti-
mation tasks, so only considering one type of representation
can lead to a relatively large bias in estimating NDE and
NIEr in this case.

In Table 1c, LSEM, LSEM-I, CMAVAE and DMAVAE
show better performance for estimating TE compared with
the other baseline methods. With the increase in sample size,
CMAVAE shows lower estimation bias than DMAVAE. The
reason could be that estimating TE requires the represen-
tation of all confounders, as DMAVAE disentangles three
types of representations, it may produce more cumulative
errors compared to CMAVAE, which only assumes one type
of latent confounders.

Evaluation on Generalisability
We also conduct experiments on multiple cases to verify the
effectiveness and the generalisation ability of DMAVAE to
data generated from structures with different types of latent
confounders. We note that among the baseline methods used
previously, only CMAVAE can achieve a similar level of es-
timation bias as our methods for NDE and NIEr. Hence, we
select CMAVAE as the compared model in this part of the
evaluation.

We have already compared DMAVAE and CMAVAE un-
der the latent confounder assumption shown in Figure 2. We
have seen that our proposed DMAVAE method outperforms
CMAVAE in estimating NDE and NIEr and achieves simi-
lar performance in estimating TE. In this section, we firstly
compare DMAVAE and CMAVAE with the data generated
based on the causal graph shown in Figure 1b. The results
are shown in Table 2. We note that DMAVAE has a higher
estimation bias compared to the results in Table 1, while

1https://github.com/AMLab-Amsterdam/CEVAE
2https://github.com/WeijiaZhang24/TEDVAE
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N 2k 3k 4k 5k 6k 7k 8k 9k 10k
LSEM 7.1 ± 1.6 7.1 ± 1.3 7.3 ± 1.2 6.9 ± 1.3 7.4 ± 0.9 7.5 ± 0.9 7.2 ± 1.0 7.2 ± 0.7 7.4 ± 0.9

LSEM-I 8.3 ± 1.8 7.9 ± 1.3 8.1 ± 1.3 7.8 ± 1.1 8.2 ± 1.0 8.6 ± 0.9 8.0 ± 1.0 8.1 ± 0.8 8.3 ± 0.8
NEW-I 10.9 ± 8.4 7.8 ± 6.7 7.9 ± 6.3 7.5 ± 5.5 7.6 ± 4.5 8.8 ± 5.9 6.8 ± 4.5 6.4 ± 4.2 8.2 ± 5.2

NEW-W 32.1 ± 12.0 21.5 ± 8.9 22.2 ± 7.7 20.3 ± 8.4 20.7 ± 9.6 16.8 ± 7.0 12.9 ± 5.0 18.6 ± 6.5 15.6 ± 6.2
IPW 7.5 ± 2.5 7.0 ± 1.7 7.7 ± 1.4 7.3 ± 1.4 7.5 ± 1.4 7.9 ± 1.4 7.3 ± 1.3 7.6 ± 1.0 8.0 ± 0.9

CMAVAE 8.9 ± 5.0 5.5 ± 2.3 4.4 ± 2.2 3.8 ± 2.0 3.9 ± 1.9 4.6 ± 1.7 4.5 ± 2.1 4.7 ± 1.4 5.2 ± 2.0
DMAVAE 4.2 ± 2.7 1.7 ± 1.3 1.7 ± 1.3 1.8 ± 1.4 1.8 ± 1.1 1.4 ± 0.8 1.7 ± 1.3 1.3 ± 1.0 1.5 ± 1.1

(a)

N 2k 3k 4k 5k 6k 7k 8k 9k 10k
LSEM 11.0 ± 3.0 10.7 ± 2.2 10.6 ± 2.5 10.4 ± 2.7 11.0 ± 1.6 10.4 ± 1.9 10.8 ± 1.7 10.5 ± 1.8 11.1 ± 1.5

LSEM-I 13.2 ± 3.1 12.1 ± 2.3 12.5 ± 2.4 12.2 ± 2.5 12.7 ± 1.8 12.1 ± 1.9 12.5 ± 1.6 12.2 ± 1.6 13.0 ± 1.5
NEW-I 11.7 ± 9.1 9.5 ± 7.6 10.0 ± 7.0 9.0 ± 6.6 10.5 ± 4.7 12.1 ± 5.6 9.1 ± 5.4 9.6 ± 4.1 11.2 ± 5.1

NEW-W 24.6 ± 9.3 18.7 ± 5.8 18.3 ± 7.2 20.8 ± 7.0 19.2 ± 6.4 16.6 ± 5.5 16.5 ± 5.7 13.5 ± 5.5 18.7 ± 6.4
IPW 58.0 ± 3.7 57.1 ± 3.6 58.2 ± 2.5 57.7 ± 2.5 57.7 ± 2.2 57.7 ± 1.9 57.6 ± 1.7 58.0 ± 2.0 58.1 ± 1.2

CMAVAE 15.1 ± 8.7 8.2 ± 5.0 6.1 ± 4.1 5.7 ± 3.5 6.0 ± 2.9 7.7 ± 3.7 9.6 ± 3.3 9.4 ± 3.3 9.2 ± 3.4
DMAVAE 6.4 ± 4.9 3.9 ± 2.6 5.1 ± 3.5 4.8 ± 3.1 4.2 ± 2.4 4.5 ± 2.5 4.3 ± 2.1 4.5 ± 2.3 4.6 ± 2.3

(b)

N 2k 3k 4k 5k 6k 7k 8k 9k 10k
LSEM 1.1 ± 0.9 1.0 ± 0.8 1.3 ± 0.8 1.1 ± 0.7 1.1 ± 0.6 1.4 ± 0.6 1.1 ± 0.5 1.2 ± 0.5 1.1 ± 0.5

LSEM-I 1.2 ± 0.9 1.1 ± 0.7 1.2 ± 0.7 1.1 ± 0.6 1.2 ± 0.7 1.5 ± 0.7 1.3 ± 0.6 1.2 ± 0.5 1.1 ± 0.5
NEW-I 10.9 ± 8.6 8.2 ± 7.0 8.6 ± 6.4 7.9 ± 5.9 8.5 ± 4.6 9.9 ± 5.8 7.5 ± 4.8 7.3 ± 4.3 9.2 ± 5.2

NEW-W 27.9 ± 11.2 18.8 ± 7.5 19.0 ± 7.3 18.5 ± 7.9 18.3 ± 8.3 15.4 ± 5.6 11.6 ± 5.0 14.6 ± 5.7 14.9 ± 5.9
IPW 14.8 ± 1.4 14.8 ± 1.0 14.8 ± 0.6 14.9 ± 0.7 14.7 ± 0.7 14.5 ± 0.7 14.8 ± 0.5 14.8 ± 0.5 14.5 ± 0.5

CEVAE 24.1 ± 5.6 27.0 ± 4.3 28.1 ± 1.1 28.3 ± 1.0 28.1 ± 0.8 27.8 ± 0.8 27.9 ± 1.1 27.5 ± 0.8 27.7 ± 1.1
TEDVAE 28.3 ± 1.3 28.3 ± 1.3 27.9 ± 1.3 28.1 ± 0.9 27.9 ± 1.0 27.6 ± 0.8 28.3 ± 1.0 28.0 ± 0.9 27.9 ± 1.0
CMAVAE 1.1 ± 0.9 1.0 ± 0.7 1.2 ± 0.7 0.9 ± 0.7 1.2 ± 0.8 1.0 ± 0.6 1.1 ± 0.8 0.9 ± 0.6 1.1 ± 0.8
DMAVAE 1.1 ± 0.9 1.0 ± 0.7 1.3 ± 0.7 0.8 ± 0.7 1.2 ± 0.7 1.3 ± 0.9 1.3 ± 0.9 1.2 ± 0.8 1.2 ± 0.9

(c)

Table 1: (a) Estimation bias (%) for the estimated NDE. (b) Estimation bias (%) for the estimated NIEr. (c) Estimation bias
(%) for the estimated TE. The best results are shown in boldface, and the runner-up results are underlined.

CMAVAE achieves a lower estimation bias than that in Ta-
ble 1. Such results are reasonable since the data generation
mechanism fully complies with the assumption of CMAVAE
(i.e., there only exists one type of confounder that affects T ,
M and Y simultaneously). However, we find that even under
this assumption, DMAVAE achieves lower estimation bias
in some datasets compared to CMAVAE, which implies that
DMAVAE has good generalisation ability.

Furthermore, we consider multiple cases when compar-
ing DMAVAE and CMAVAE in terms of their generalisabil-
ity. Similar to the job market example mentioned in Intro-
duction, the causal graph for real applications may contain
one type or two types or all the three types of latent con-
founders. When considering the different combinations of
the three types of latent confounders, we get six cases (in-
dicated in Figure 4 as Case 1 to Case 6). The datasets for
each case are generated separately following the respective
causal graphs. For Case 1 to Case 3, we assume only one
type of latent confounders exists. For Case 4 to Case 6, we
assume there exist two types of latent confounders. The re-
sults for the six cases are shown in Figure 4. From the figure,
we see that DMAVAE outperforms CMAVAE in all 6 cases.
This indicates that DMAVAE has better generalisation abil-
ity, and can deal with different cases in practice more effec-
tively than CMAVAE.

Model DMAVAE CMAVAE
N NDE NIEr NDE NIEr

2k 8.5 ± 4.8 7.4 ± 5.5 5.2 ± 4.4 19.9 ± 8.8
3k 4.6 ± 3.6 5.4 ± 3.5 2.6 ± 2.3 18.7 ± 9.3
4k 4.3 ± 2.4 4.5 ± 3.5 2.9 ± 2.1 9.9 ± 5.8
5k 4.3 ± 2.1 4.5 ± 2.6 3.8 ± 2.2 4.8 ± 1.0
6k 4.2 ± 2.0 4.8 ± 3.5 4.3 ± 2.5 4.8 ± 4.1
7k 3.6 ± 1.9 4.9 ± 3.2 3.8 ± 2.0 5.4 ± 3.8
8k 3.9 ± 1.7 4.6 ± 2.6 3.5 ± 1.7 4.7 ± 4.4
9k 4.1 ± 1.8 4.7 ± 2.8 3.9 ± 1.8 3.9 ± 3.9

10k 4.0 ± 1.9 4.7 ± 3.0 4.0 ± 1.8 3.8 ± 3.2

Table 2: Estimation bias (%) for the estimated NDE and
NIEr with data generated based on the causal graph shown
in Figure 1b. The best results are shown in boldface.

Case Study
Adult Dataset To illustrate the potential of DMAVAE for
real-world applications, we show that DMAVAE can be used
for detecting discrimination. We apply DMAVAE on the
real-world dataset Adult. The dataset is retrieved from the
UCI repository (Dua and Graff 2017) and it contains 14 at-
tributes including personal, educational and economic infor-
mation for 48842 individuals. We use the sensitive attribute
gender as T , occupation as M , income as Y and all the other
attributes as the proxy attributes X .
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Figure 4: Results for the six cases. The horizontal axis indi-
cates sample size (N) and the vertical axis indicates estima-
tion bias (%).

For causality-based discrimination detection, NDE indi-
cates the causal effect that the sensitive attribute directly has
on the outcome and NIE refers to the causal effect through
the mediator on the outcome. Hence the approach detects
discrimination in a dataset by estimating NDE and NIE.
There is direct discrimination when the NDE is greater than
a given threshold τ , and there exists indirect discrimination
when the mediator is also considered as a sensitive attribute
and the NIE is greater than τ (Zhang, Wu, and Wu 2018).

We obtain that NDE = 0.804 and NIE = 0.002 by apply-
ing DMAVAE on the Adult dataset (τ = 0.05). The results
indicate that there is significant direct discrimination against
gender, while the discrimination against gender through oc-
cupation is ignorable.

Related Work
Mediation analysis has its origins in structural equation
models (SEMs), and the specific methods of CMA can be
traced back to path analysis (Wright 1934), which has been
widely used in social sciences for decades (Baron and Kenny
1986; Bollen 1989). Under the linear models, causal ef-
fects are expressed as the coefficients of structural equa-
tions. These coefficients are defined, identified, and esti-
mated based on the assumption of sequential ignorabil-
ity and commitment to a specific distribution. Specifically,
LSEM is a well-established method based on linear SEMs
for mediation analysis (Baron and Kenny 1986; James, Mu-
laik, and Brett 1983; Judd and Kenny 1981; MacKinnon
2012; MacKinnon and Dwyer 1993). Although LSEM is ex-
tremely simple to use, the additional assumptions are often
not satisfied in reality, leading to biased estimation (Huber,
Lechner, and Mellace 2016; Rudolph et al. 2019).

The above situation has been improved in recent decades.

Counterfactual thinking in statistics (Rubin 1974; Holland
1988) and epidemiology (Robins and Greenland 1992), to-
gether with the formal definitions based on non-parametric
structural equations provide theoretical support for media-
tion analysis to be expanded from linear to nonlinear mod-
els. With counterfactual thinking, defining direct and indi-
rect effects requires no commitment to the distributional
forms, and thus applies under functions with arbitrary non-
linear interactions, and both continuous and categorical vari-
ables (Pearl 2014; Rubin 2005). For example, Imai, Keele,
and Tingley (2010) extended LSEM and proposed a gen-
eral approach that brings the definition, identification, es-
timation, and sensitivity analysis of causal mediation ef-
fects closely together within a single method; Huber (2014)
demonstrated that the applicability of inverse probability
weighting depends on whether some confounders are them-
selves influenced by the treatment or not. For more details on
mediation analysis, please refer to the papers (MacKinnon,
Fairchild, and Fritz 2007; VanderWeele 2016).

In recent years, deep learning has demonstrated power-
ful ability in fitting non-linear models, and researchers are
devoted to estimating causal effects through deep learn-
ing techniques. CEVAE (Louizos et al. 2017) is the first
method that uses VAE to learn the representation of la-
tent confounders and adjust for confounding bias using the
learned representation. Cheng, Guo, and Liu (2022) used
VAE-based techniques for mediation analysis and proposed
CMAVAE that can learn the representation of latent con-
founders to estimate direct and indirect effects under the se-
quential ignorability assumption (Imai, Keele, and Tingley
2010).

However, CMAVAE assumes that there is only one type
of latent confounders, which is not applicable to the dif-
ferent cases in practice. Our work improves CMAVAE. We
extend the piecemeal deconfounding assumption to disen-
tangled representation learning. The goal is to achieve more
accurate estimation results and enhance the generalisation
ability of the method.

Conclusion
This work investigates an important causal mediation anal-
ysis problem, i.e., how to achieve accurate estimation of
NDE, NIE and TE. We use a relaxed assumption, piecemeal
deconfounding rather than sequential ignorability for causal
mediation analysis. We extend the piecemeal deconfound-
ing assumption to representation learning in a general case
with three types of latent confounders. Then, we introduce
DMAVAE, a VAE-based method that can learn disentangled
representations from proxy attributes for estimating NDE,
NIE and TE. With extensive experiments, we show that the
proposed method significantly outperforms other mediation
analysis methods on synthetic datasets. We demonstrate that
DMAVAE has a strong generalisation ability and can be ap-
plied to different cases. Furthermore, we verify the ability
of DMAVAE on a real-world application. For future work,
we will apply this model to scenarios of interest in media-
tion analysis to help understand mechanisms or guide policy
formulation.
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