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Abstract. In causal inference, a fundamental task is to estimate causal
effects using observational data with confounding variables. K Nearest
Neighbor Matching (K-NNM) is a commonly used method to address
confounding bias. However, the traditional K-NNM method uses the
same K value for all units, which may result in unacceptable perfor-
mance in real-world applications. To address this issue, we propose a
novel nearest-neighbor matching method called DK-NNM, which uses
a data-driven approach to searching for the optimal K values for dif-
ferent units. DK-NNM first reconstructs a sparse coefficient matrix of
all units via sparse representation learning for finding the optimal K
value for each unit. Then, the joint propensity scores and prognostic
scores are utilized to deal with high-dimensional covariates when per-
forming K nearest-neighbor matching with the obtained K value for a
unit. Extensive experiments are conducted on both semi-synthetic and
real-world datasets, and the results demonstrate that the proposed DK-
NNM method outperforms the state-of-the-art causal effect estimation
methods in estimating average causal effects from observational data.

Keywords: Causal inference ⋅ Causal effects estimation ⋅ Matching
methods ⋅ Confounding bias ⋅ K nearest neighbor method

1 Introduction

Most scientific research in fields like medicine, economics, and behavioral science
aims to infer the causal effect of a treatment on an outcome of interest [1,2].
One of the key challenges in causal inference is how to eliminate confounding
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bias (bias caused by confounders) when estimating causal effects [3]. Confound-
ing bias arises from unbalanced distributions in treatment and control groups
among covariates. Randomized control trials (RCTs) are the most effective way
to eliminate the bias [4]. However, due to limitations of time, cost, and ethical
concerns, RCTs are often infeasible [2]. As a viable alternative, estimating causal
effects from observational data has become increasingly popular [5].

Matching is a popular approach to eliminating confounding bias by balancing
the distribution of covariates between the treatment and control groups in paired
matching [6]. Some commonly used matching methods include nearest-neighbor
matching, subclassification matching, and weighting-based matching [7].

K nearest-neighbor matching (K-NNM) is one of the most widely used match-
ing methods [1]. However, it is challenging to determine the K value. Setting K
too large can lead to underfitting and increased computational bias. Conversely,
setting K too small can increase the number of false matches. Moreover, the
traditional KNN method assigns a fixed K value to all units, it may lead to
a biased estimation and impractical outcomes in real-world applications [8,9].
Thus, there is a need to develop a novel K-NNM method that can set an optimal
K value for each unit for causal effect estimation from observational data.

In this paper, we propose a novel Data-driven K-Nearest Neighborhood
Matching algorithm (DK-NNM) for causal effect estimation from observational
data. We first reconstruct all units to obtain a sparse coefficient matrix by using
sparse representation learning, and the matrix is used to obtain the optimal K
value of each unit. We then perform K-NNM based on propensity and prognostic
scores for reducing the dimension of the covariates to avoid the curse of dimen-
sionality [10]. The main contributions of this paper are summarized as follows:

– We utilize a sparse representation learning method to reconstruct the covari-
ates for obtaining an optimal K value of each unit for unbiased estimation of
causal effects with observational data.

– We utilize propensity and prognostic scores to reduce the dimension of covari-
ates, instead of using all covariates or only propensity scores for matching.

– We apply our proposed DK-NNM method to both semi-synthetic and real-
world datasets for estimating causal effects. The results demonstrate that our
proposed DK-NNM method has better performance and efficiency compared
with the state-of-the-art causal effect estimation methods.

2 Related Work

In the following, we review previous papers related to our proposed method.
In practice, matching methods are commonly used in causal inference to iden-
tify groups with comparable or balanced covariate distributions [7]. Rubin and
Thomas [11] projected the entire set of variables into one dimension and proposed
propensity score matching. Diamond and Sekhon [12] proposed Genetic matching
(GenMatch) to improve covariate balance by learning covariate weights, which
can be thought of as a broader version of propensity score matching and Maha-
lanobis distance matching. Additionally, Leacy and Stuart [13] demonstrated
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that using the combination of propensity and prognostic scores in matching
methods had better performance than single-score-based matching methods in
low-dimensional settings.

The most relevant work to ours is K-NNM. The exact K-NNM [1] is one of
the most common methods. Luna et al. [14] adopted two resampling schemes to
provide valid inference for K-NNM estimators. Additionally, Wager et al. [15]
developed a random forest-based method to determine the weights for neighbor
observations. However, these methods all use a fixed K value. When facing a
more complicated scenario, it may lead to a huge deviation in the estimations.

3 Background

Under the potential outcome framework [2], we define the binary treatment
variable Ti, which indicates whether a unit takes the treatment or not. The units
that receive the treatment (Ti = 1) are treated units and the other units (Ti = 0)
are control units. Let X denote the set of pre-treatment variables, i.e. covariates
of Ti, which are variables that remain unchanged in the treatment process. Yi

represent the observed outcome for unit i, and we use Yi(1) to represent the
potential outcome for unit i in treated group, and Yi(0) is the potential outcome
of i in control group. However, in practice, each unit can only be assigned to
either the treated or control group, so either Yi(1) or Yi(0) is unobserved for
unit i. This is the fundamental challenge in causal effect estimation.

One of the basic tasks in causal inference is to estimate the causal effect of
treatment T on outcome Y from observational data. In this paper, we would like
to estimate the Average Treatment Effect (ATE) and the Average Treatment
effect on the Treated group (ATT), as defined in the following:

ATE = E[Yi(1) − Yi(0)] (1)

ATT = E[Yi(1) ∣ T = 1] − E[Yi(0) ∣ T = 1] (2)

The propensity score e(X) is defined as the conditional probability of a unit
receiving the treatment conditioned on the full set of covariates X [16], i.e.,
e(X) = P (T = 1 ∣ X). Furthermore, the prognostic score p(X) is defined as the
predicted outcome under the control condition [17], reflecting baseline “risk”, i.e.,
p(X) = E[Y ∣ X]. We use both the propensity and prognostic scores to construct
a 2-dimensional space for conducting the matching process. For estimating causal
effects from observational data, the following assumptions are required.

Assumption 1 (Stable Unit Treatment Value Assumption [2]). The sta-
bility hypothesis has two implications: it first implies that the potential outcomes
in different units are independent of each other. Besides, for each unit, there are
no different forms of treatment levels that result in different potential outcomes.

Assumption 2 (Overlap [2]). For the covariates X, every unit has a non-zero
probability of receiving treatment 1 or 0. Formally, 0 < P (T = t ∣ X) < 1, t = 0, 1.
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Assumption 3 (Unconfoundedness [18]). The distribution of treatments is
independent of the potential outcome conditioning on the set of covariates X,
i.e. T ⫫ (Y (0), Y (1)) ∣ X.

4 The Proposed DK-NNM Method

In this section, we introduce our proposed DK-NNM (Data-driven K-NNM)
method. Specifically, we first explain the principle of selecting the K value for
each unit through sparse representation learning. Then we present the specific
process of our proposed DK-NNM method.

4.1 Sparse Representation Learning for the Optimal K Values

We propose to use sparse representation learning via self-representation for
reconstructing the space of X ∈ R

n×d, where n and d are the numbers of units
and covariates, respectively.

We use a linear model to represent a sample (unit) xj as xj = xizi + εi
where zi and εi are the dictionary and error term of xi, respectively. The self-
representation makes the reconstruction error as small as possible [19,20], so
as to obtain the sparse coefficient matrix Z. We utilize the least squares loss
function to reconstruct the self-representation learning process:

min
z

n

∑
i=1

(xizi − xj)
2 = min

Z
∥XZ −X∥

2
F (3)

where Z ∈ R
n×n denotes the reconstruction coefficient matrix and is uti-

lized to capture the correlations within the samples. Based on (3), we have
Z = (XTX)

−1XTX. In real-world applications, XTX is not always invertible.
The �2−norm regularization term is often added to avoid the invertible issue.
Therefore, our loss function can be rewritten as follows:

min
Z

∥XZ −X∥
2
F + μ∥Z∥2

2 (4)

where ∥Z∥2
2 is the �2−norm regularization term and μ is a tuning parameter. The

optimal solution of the optimization problem in (4) can be represented in a close
form, i.e., Z = (XTX+μI)−1XTX. However, the solution of Z does not have the
sparsity. To obtain the optimal k value for each unit, we expect that each unit
is represented by those units strongly correlated with it, and the coefficients of
the units with weak correlations are compressed to zero. Therefore, �2−norm is
replaced by �1−norm in our method, which has been proved to generate sparsity
[21]. Hence, our objective function is rewritten as follows:

min
Z

∥XZ −X∥
2
F + α∥Z∥1 ,Z ⩾ 0 (5)

where ∥Z∥1 is the �1−norm regularization term and Z ⩾ 0 means that each
element of Z is non-negative. And α is a tuning parameter of �1−norm to control
the sparsity of matrix Z. The larger α is, the more sparse the resulting matrix.
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Moreover, we consider a nonlinear dimensionality reduction method, Locality
Preserving Projections (LPP) [22] to preserve the neighborhood structure of the
data. The LPP regularization term is defined as ϕ(Z) = Tr(ZTXTLXZ), where
L ∈ R

d×d is a Laplacian matrix, implying the correlative information between
features. L = D − S, where D ∈ R

d×d is a diagonal matrix and S ∈ R
d×d is a

similarity matrix. Thus, our final objective function is defined as:

min
Z

1
2 ∥XZ −X∥

2
F + α∥Z∥1 + βϕ(Z),Z ⩾ 0 (6)

where β is a tuning parameter to adjust the structure of matrix Z, and is used
to balance the magnitude between ϕ(Z) and ∥XZ −X∥

2
F .

After optimizing (6), the optimal solution Z∗ can be obtained, which rep-
resents the weight matrix. The element zij of Z∗ can be understood as the
correlation between the ith sample and the jth sample. If zij > 0, the ith sample
and the jth sample are positively correlated; if zij < 0, they are negatively corre-
lated; and if zij = 0, they are independent. To predict, we only use those relevant
samples, i.e., samples with nonzero coefficients, instead of using all samples. We
take an example to illustrate the optimal K value for each sample. We assume
that the optimal solution Z∗ ∈ R4×4 is as follows:

Z∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.5 0 0 0.4 0.6
0 0.3 0.8 0 0
0 0 0.7 0 0.1
0.4 0.8 0 0.6 0
0.6 0 0.1 0 0.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

There are five samples, and assume that the first two samples are in the
treated group (T = 1) and the last three samples are in the control group (T = 0).
There are three nonzero elements in the first row of Z∗, that is z11, z14 and z15.
It means that the first treated sample is only related to the last two samples
except itself, i.e., the fourth and fifth control samples. Then the corresponding
optimal K value for the first sample is 2. Similarly, the corresponding optimal K
value for the second sample is 1. In this way, the K value of each sample can be
obtained. Therefore, our proposed sparse representation learning method takes
the data distribution and prior knowledge into account to choose the optimal K
value for each sample respectively.

4.2 Matching Based on the Propensity and Prognostic Scores

After learning the optimal K value for each unit, we can employ the K-NNM
method to estimate the causal effect from observational data. The matched unit
can be considered as the counterfactual outcome [23] for the unit.

In the matching algorithm, our DK-NNM algorithm employs the Maha-
lanobis distance to measure the distance between each pair of units. Additionally,
we transform all covariates into two-dimensional covariates based on propensity
score e(X) and prognostic score p(X), significantly reducing dimensionality com-
pared to full matching on the complete covariates. Leacy et al. [13] suggested that
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matching method conditioning on the propensity and prognostic scores might
help to decrease bias and enhance the accuracy of estimations. Hence, these two
scores are utilized as the distance metric for our proposed DK-NNM method.

Formally, for the units i and j with estimated propensity scores êi, êj and
prognostic scores p̂i, p̂j , the score-based Mahalanobis distance between i and j
can be defined as follows:

d(i, j) = [(
êi
p̂i
) − (

êj
p̂j

)]
⊤

Σ
−1

[(
êi
p̂i
) − (

êj
p̂j

)] , (7)

where Σ indicates the variance-covariance matrix of (ê, p̂)
⊤. The propensity

score ê can be estimated using logistic regression of the covariates X relative to
the treatment variable T . For estimating the prognostic score, we restrict our
analysis to the control group and perform an ordinary least squares regression
of the outcome variable Y on the covariates X. After conducting the K-NNM,
we have a set of K-NNs for unit i, denoted as JK(i). Then, we have

Ỹi = (2Ti − 1)
1

Ki
∑

j∈JK(i)

Yj (8)

where Ki is the optimal k value for the ith unit, and Ỹi is the imputed outcome
for unit i that is regarded as the unobserved potential outcome in this work.

5 Experiments

In this section, we conduct experiments on four datasets to evaluate the perfor-
mance of our method, including IHPD, Jobs, Cattaneo2 and RHC. IHDP [24]
is a semi-synthetic dataset, whose ground truth is generated by the synthetic
process. The other three real-world datasets have empirical causal effects in the
literature. We estimate ATT on the Jobs dataset, since the empirical ATT of this
dataset is known. For experiments on the other datasets, we estimate ATE. To
evaluate the performance of our proposed method, we use the root mean square
errors (RMSE), and standard deviations (SD) as the evaluation metrics.

To demonstrate the superiority of our method, we take the following estima-
tors for comparison: NNM (Nearest-Neighbor matching [11]), PSM (Propensity
Score Matching [16]), GenMatch (Genetic Matching [12]), BART (Bayesian
Additive Regression Trees [24]), CF (Causal Forest [25]), BCF (Bayesian Causal
Forest [26]), and S-LASSO (S-learner using LASSO Regression [27]).

5.1 Experiment on Semi-synthetic Dataset IHDP

The dataset IHDP is a randomized experiment data [24] from the Infant Health
and Development Program (IHDP). This program provided low-birth-weight,
premature infants with high-quality child care and home visiting service. The
IHDP dataset contains 747 units. There are 25 pre-treatment variables related
to the study such as birth weight, twin status, first born, and sex. Following the
procedures of Hill [24], the ground truth ATE of the IHDP dataset is 4.03.
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Table 1. Experimental results on IHDP. The best performance is highlighted.

method ATE RMSE SD

NNM 4.1300 0.1533 0.1645
PSM 3.8352 0.1945 0.1141
GenMatch 4.0002 0.0295 0.1874
BART 4.0180 3.5461 0.1192
CF 3.9733 2.7776 0.1019
BCF 3.9724 0.9369 0.9358
S-LASSO 3.8887 0.6956 0.6816
DK-NNM 4.0504 0.0252 0.0145

Table 2. Experimental results on Jobs. The best performance is highlighted.

method ATT RMSE SD

NNM 198.16 683.34 1280.70
PSM 638.04 800.78 703.33
GenMatch 1098.50 212.54 1407.50
BART 966.60 2133.15 1024.00
CF 335.54 389.40 869.70
BCF 659.47 603.52 559.85
S-LASSO 277.24 2081.98 1992.62
DK-NNM 555.07 331.41 88.94

The experimental results of all estimators are listed in Table 1. We observe
that DK-NNM achieves the best performance for ATE estimation, in particular,
the standard deviation is extremely small against others. This demonstrates the
competitiveness of DK-NNM with other state-of-the-art estimators.

Table 3. Experimental results on Cattaneo2 and RHC.

dataset Cattaneo2 RHC
method ATE SD ATE SD

NNM −276.47 30.10 0.1006 0.0266
PSM −303.97 18.63 0.0481 0.0143
GenMatch −250.64 30.50 0.0671 0.0273
BART −273.20 24.87 0.0389 0.0255
CF −224.64 26.50 0.0229 0.0234
BCF −227.08 79.81 0.0298 0.0176
S-LASSO −240.55 87.95 0.0490 0.0810
DK-NNM −227.96 17.53 0.0656 0.0035



730 T. Xu et al.

5.2 Experiments on Three Real-World Datasets

Jobs. We adopt the Lalonde experiment dataset [28] and the control group
data from the Panel Study of Income Dynamics(PSID) [29]. The pre-treatment
variables include Age, Years of Education, and Proceeds in 1974 and 1975. The
treatment variable represents whether the unit attends job training or not. We
use the results of Imai’s study as an experimental benchmark, the average causal
effect on the treated group (ATT) is $886 with a standard error of $488 [29].

Table 2 shows the results for estimating ATT on the Jobs dataset. From
Table 2, we see that the estimated ATT is close to the empirical ground truth and
has the smallest SD. The results of BCF and BART are also close to the empirical
ATT, but their estimated SDs are large. This indicates that the estimate of DK-
NNM is consistent with the credible result and has a smaller SD.

Cattaneo2. The Cattaneo2 [30] is commonly used to study the effect of maternal
smoking on birth weight. The mother’s smoking status is used as the treatment
variable. A variety of covariates are included, such as the Mother’s marital status
and Whether to drink alcohol or not. In a former paper, Almond et al. [31]
studied the effect of maternal smoking on birth weight in pregnancy and they
found a strong negative effect of about 200 g to 250 g lighter than normal birth.

The experimental results of all estimators on the Cattaneo2 dataset are listed
in Table 3. The estimated ATE by DK-NNM is −227.96 g, which falls within the
range of credible results obtained by [31]. And only the ATEs estimated by
DK-NNM and CF fall within the empirical estimation interval (−250 g, −200 g),
which further illustrates the competitiveness of our proposed DK-NNM method.

Right Heart Catheterization. The RHC dataset [32] was obtained from an obser-
vational study, which concerned the efficacy of Right Heart Catheterization
(RHC) in the initial treatment of critically ill patients. The treatment is whether
a patient received an RHC within 24 h. The covariates contain some physiologi-
cal and clinical indicators. The existing evidence suggests that the use of RHC
can result in higher 180-day mortality compared to not using RHC.

The experimental results of all estimators on the RHC dataset are described
in Table 3. We can conclude that the causal effects obtained by PSM, GenMatch,
BART, CF, BCF and DK-NNM are consistent. This indicates that the applica-
tion of RHC leads to higher mortality rates within 180 days compared to not
applying RHC. The consistent estimate of our method with the previous findings
in the literature demonstrates the practicability of our DK-NNM method.

6 Conclusion

In this work, the key aspect of our proposed DK-NNM algorithm is to recon-
struct the samples to obtain a sparse correlation matrix, allowing us to iden-
tify the best K value for each unit in the K-NNM method. To the best of our
knowledge, this is the first study to incorporate data-driven K values into the
K-NNM method in causal inference, while also considering the neighborhood
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structure of the data. Additionally, we employ dimensionality reduction tech-
niques to improve the efficiency of our DK-NNM method. Experimental results
on extensive datasets demonstrate that our method outperforms other match-
ing methods, indicating its potential usefulness for causal effect estimation in
various applications.
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