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Abstract— Latent confounders are a fundamental challenge for
inferring causal effects from observational data. The instrumental
variable (IV) approach is a practical way to address this
challenge. Existing IV-based estimators need a known IV or
other strong assumptions, such as the existence of two or
more IVs in the system, which limits the application of the IV
approach. In this article, we consider a relaxed requirement,
which assumes there is an IV proxy in the system without
knowing which variable is the proxy. We propose a variational
autoencoder (VAE)-based disentangled representation learning
method to learn an IV representation from a dataset with latent
confounders and then utilize the IV representation to obtain an
unbiased estimation of the causal effect from the data. Extensive
experiments on synthetic and real-world data have demonstrated
that the proposed algorithm outperforms the existing IV-based
estimators and VAE-based estimators.

Index Terms— Causal inference, disentangled representation
learning, instrumental variable (IV), latent variables, observa-
tional data.

I. INTRODUCTION

ESTIMATING the causal effect of a treatment (also
known as intervention, or exposure) on an outcome is

a fundamental task in many areas [1], [2], such as policy-
making and new drug evaluation. Randomized controlled trials
(RCTs) are the gold standard for inferring causal effects, but
they are often impractical in real-world applications due to
time or ethical constraints [3]. Thus, causal effect estimation
with observational data has become an alternative to RCTs.

However, estimating causal effects using observational
data suffers from confounding bias, due to the spurious
association caused by confounders that affect both the
treatment and outcome variables. Unmeasured confounders
make the situation even worse [4], [5], [6]. As shown in
Fig. 1(a), if there is an unmeasured confounder (U ) between
the treatment (W ) and the outcome (Y ), the causal effect of
W on Y cannot be estimated with observational data except
there is an instrumental variable (IV) [1], [7], [8].
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Fig. 1. Causal graphs with latent variables to show the problem of causal
effect estimation from observational data. (a) In DAG, the causal effect of
W on Y cannot be estimated from observational data. (b) In DAG, there is a
valid IV Z . (c) In DAG, Z is an unmeasured IV and S is an SIV of Z . The
causal effect of W on Y in both DAGs [(b) and (c)] can be recovered from
observational data.

The IV approach is a commonly used way to estimate causal
effects from data when the unconfoundedness assumption is
violated [1], [9]. A valid IV (denoted as Z ) must satisfy the
following three conditions [7], [10], [11]: 1) Z influences the
treatment (i.e., relevance condition); 2) the causal effect of Z
on Y is only through W (also known as exclusion restriction);
and 3) Z and Y do not have any common causes (i.e.,
unconfounded instrument). The three conditions of a valid IV
can only be verified using domain knowledge or based on the
underlying causal graph of the system but not from data [12].
It is known that domain knowledge of an IV or a causal graph
is rarely available in many real applications [7]. Therefore,
it is desirable to explore an effective data-driven method to
discover a valid IV directly from data.

A few data-driven IV-based methods have been proposed
for causal effect estimation without assuming a known IV, but
they often have other constraints. For example, IV.Tetrad [13]
requires that at least a pair of IVs exist in the system and the
set of all the remaining variables excluding the pair of IVs is
a conditioning set of the IV with respect to the treatment and
the outcome. sisVIVE [14] requires that at least half of the
variables (the set of candidate IVs) are valid IVs.

Some research has proposed the necessary conditions of
IVs for obtaining a bound estimation of a causal effect, i.e.,
a multiset of possible estimates from data, instead of a unique
estimate. For instance, Pearl [12] proposed an instrumental
inequality to find a set of candidate IVs from data with
discrete variables, and Kuroki and Cai [15] extended the
instrumental inequality to linear structural equation models
with continuous variables. Assuming a linear non-Gaussian
acyclic causal model, Xie et al. [16] proposed a necessary
condition based on a generalized independent noise condition
for identifying continuous variables as the candidate valid IVs,
but the condition only produces a bound estimation.
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Therefore, the existing data-driven IV methods either rely
on strong assumptions or only provide a necessary condition
for determining candidate IVs. In order to develop a more
effective and practical data-driven IV-based causal effect
estimator, in this article, we consider a relaxed requirement,
which assumes there exists at least one IV proxy (also known
as surrogate IV, i.e., SIV) in the system without knowing
which variable is the proxy. The assumption of an IV proxy
is practical since there exist many proxy variables for latent
confounders [17], [18].

It is challenging to determine IVs (or SIVs) from the set
of measured covariates since IVs (or SIVs) and measured
confounders are statistically inseparable. To address this
challenge, we propose a data-driven method, disentangled
IV based on variational autoencoder (DIV.VAE), using
disentangling techniques [19], [20] to learn the latent
representation 8 of the set of pretreatment variables X, which
are measured before applying the treatment W and observing
the outcome Y [8], and disentangle 8 into (Z, C), where Z
represents IV and C represents confounders in the latent space.
To the best of authors’ knowledge, DIV.VAE is the first work
using the VAE model to infer the IV representation from
observed pretreatment variables when the unconfoundedness
assumption is not satisfied.

Our main contributions are summarized as follows.
1) We address the challenging problem of causal effect esti-

mation from data in the presence of latent confounders.
2) We propose a novel disentangled representation learning

method, DIV.VAE, to learn the latent IV representation
and the latent confounding representation for achieving
unbiased causal effect estimation.

3) We empirically evaluate the effectiveness of DIV.VAE
on synthetic and real-world datasets, in comparison with
the state-of-the-art causal effect estimators. The results
show that the DIV.VAE outperforms baseline estimators.

II. PRELIMINARIES

A. Notations

We represent variables and their values with uppercase and
lowercase letters, respectively. A set of variables and a value
assignment of the set are denoted by bold-faced uppercase and
lowercase letters, respectively.

Let G = (V, E) be a directed acyclic graph (DAG), where
V = {V1, . . . , Vp} are the set of nodes representing p random
variables and E ⊆ V × V are the set of edges representing
the relationships between nodes. In DAG G, two nodes are
adjacent when there exists a directed edge → between them.
A path π from Vi to V j is a directed or causal path if all edges
along it are directed toward V j . If there is a directed path π

from Vi to V j , Vi is known as an ancestor of V j and V j is a
descendant of Vi . The sets of ancestors and descendants of a
node V are denoted as An(V ) and De(V ), respectively.

A DAG is causal if the directed edge Vi → V j between Vi

and V j indicates that Vi is a direct cause of V j . In a DAG G,
a path π between Vi and V j comprises a sequence of distinct
nodes ⟨Vi , . . . , V j ⟩ with every pair of successive nodes being
adjacent, and Vi and V j are end nodes of π .

The definitions of Markov property and faithfulness are
introduced in the following.

Definition 1 (Markov Property [1]): Given a DAG G =
(V, E) and the joint probability distribution of V (P(V)),
G satisfies the Markov property; if for ∀Vi ∈ V, Vi is
probabilistically independent of all of its nondescendants,
given the parent nodes of Vi .

Definition 2 (Faithfulness [4]): A DAG G = (V, E) is
faithful to a joint distribution P(V) over the set of variables
V if and only if every independence present in P(V) is
entailed by G and satisfies the Markov property. A joint
distribution P(V) over the set of variables V is faithful to
the DAG G if and only if the DAG G is faithful to the joint
distribution P(V).

When the faithfulness assumption is satisfied between a
joint distribution P(V) and a DAG of a set of variables V,
the dependence/independence relations among the variables
can be read from the DAG [1], [4]. In a DAG, d-separation
is a well-known graphical criterion that is used to read off
the conditional independence between variables entailed in
the DAG when the Markov property and faithfulness are
satisfied [1], [4].

Definition 3 (d-Separation [1]): A path π in a DAG G =
(V, E) is said to be d-separated (or blocked) by a set of nodes
M if and only if: 1) π contains a chain Vi → Vk → V j or
a fork Vi ← Vk → V j such that the middle node Vk is in M
or 2) π contains a collider Vk such that Vk is not in M and
no descendant of Vk is in M. A set M is said to d-separate
Vi from V j (Vi ⊥⊥ V j |M) if and only if M blocks every path
between Vi and V j . Otherwise, they are said to be d-connected
by M, denoted as Vi ⊥̸⊥ V j |M.

The back-door criterion is a well-known graphical criterion
for determining an adjustment set in a given DAG G. The
back-door criterion can be used directly to find an adjustment
set M ⊆ X relative to an ordered pair of variables (Vi , V j ) in
the given G.

Definition 4 (Back-Door Criterion [1]): In a DAG G =
(V, E), for an ordered pair of variables (Vi , V j ) ∈ V, a set
of variables M ⊆ V \ {Vi , V j } is said to satisfy the back-door
criterion in the given DAG G if: 1) M does not contain a
descendant node of Vi and 2) M blocks every back-door path
between Vi and V j (the paths between Vi and V j starting with
an arrow into Vi ). A set M is referred to as a back-door set
relative to (Vi , V j ) in G if M satisfies the back-door criterion
relative to (Vi , V j ) in G.

B. Instrumental Variables

We follow the convention and definitions of IVs used in [7],
[13], and [21]. We assume a causal DAG G with the set of
variables V = X∪U∪{W, Y }, where W is a binary treatment
indicator (w = 1 for being treated and w = 0 for control), Y is
the outcome of interest, X is a set of pretreatment variables,1

i.e., ∀X ∈ X, X /∈ De(W ∪Y ) where De(W ∪Y ) is a shorthand
of De(W )∪De(Y ), and U is the set of latent confounders. The

1A variable is measured before applying W and observing Y in a study or
experiment. Pretreatment variables can be distinguished from other variables
in a real-world application by domain experts [8].
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goal of this work is to estimate the average causal effect of
W on Y from observational data with latent confounders.

A valid IV facilitates the identification of the causal effect of
W on Y from data with latent confounders [9], [12]. A valid IV
Z [7], [10] satisfies the three conditions as described in the
Introduction. Given a valid IV Z , the causal effect of W on Y
(referred to as βwy) can be calculated as σzy/σzw, where σzy

and σzw are the estimated causal effects of Z on Y and Z on
W , respectively.

In this work, we employ the orthogonal IVs approach
(Ortho.IV) [22], [23] to calculate βwy from data with latent
confounders when an IV Z is available. The Ortho.IV is to
optimize the minimization problem of a loss function that
satisfies a Neyman orthogonality criterion with the aid of
a known IV by solving the moment equation [22]: E[(Y −
E[Y |X] − θ(X) × (W − E[W |X]))(Z − E[Z |X])] = 0,
where θ(.) is a function of X. Once we have a valid IV, the
Ortho.IV method can be used to obtain βwy unbiasedly from
observational data with latent variables.

An IV, such as Z in Z → W in Fig. 1(b), is often
unmeasured in many real-world applications. An effect
variable of an IV, such as S in Fig. 1(c), is more likely to
be measured in real-world cases and is called an SIV [7],
[24], [25].

Definition 5 SIV]: In a causal DAG G = (X ∪ U ∪
{W, Y }, E), a variable S ∈ X is said to be an SIV with
respect to W → Y , if: 1) S and W share a latent IV Z (i.e.,
S ← Z → W ); 2) S and Y are associated only through W
(i.e., exclusion restriction); and 3) S does not share common
causes with Y (i.e., unconfoundedness instrument).

An SIV is a proxy variable of a standard IV [7], [25].
An SIV can be used as a valid IV. However, in practice, it is
often difficult to identify which variable is a valid IV (standard
IV or SIV) even if it is measured.

C. Problem Setup

We assume that the data are generated from a causal DAG
G = (X∪U∪{W, Y }, E) containing the treatment variable W ,
the outcome variable Y , a set of pretreatment variables X, and
a set of latent confounders U. There exists at least one SIV
in X, but we do not know which Xs are SIV(s). Or the SIV
information is embedded in a number of Xs. We will query
the causal effect of W on Y , i.e., βwy from observational data.
We allow the existence of multiple back-door paths between
W and Y with some latent variables in U lying on some of
these back-door paths between W and Y .

We do not assume that an IV or an SIV is known, and
it is difficult to identify an IV or an SIV from data. For
example, assume that the causal DAG in Fig. 2 represents
a data generation mechanism. S is a set of SIVs. In the
DAG, we can infer that S is independent of each variable in
{X1, X2, XY , XC}. In data, we can obtain a set of independent
pairs (S, X1), (S, X2), (S, XC), (XC , X1), (XC , X2), (X1, X2).
This does not help us to find which variable is an SIV. One
may wish to learn a partial ancestral graph (PAG) [26] from
data for determining the set of SIVs S. However, two variables
in the above pair (e.g., S and XY ) cannot be separated since the

Fig. 2. Example causal DAG representing the data generation mechanism.
The shaded area indicates all the measured pretreatment variables, and among
them, S is a set of SIVs, Z is a set of latent IVs, and U is a latent confounder
affecting both W and Y .

Fig. 3. Disentanglement scheme of DIV.VAE, represented as a causal graph.
The dotted arrows indicate possible ancestral relationships between nodes. W ,
Y , and U ′ are the treatment variable, the outcome, and the latent confounder
of W and Y , respectively. X is the set of measured pretreatment variables
and contains at least one SIV. 8 = (Z, C) is the latent representation of X,
where Z and C are the sets of disentangled IV representation and confounding
representation, respectively.

spurious association caused by the latent confounder U [10],
[12]. Hence, a causal discovery algorithm using conditional
independence tests such as fast causal inference (FCI) [4]
does not help us find an SIV from data. Even worse, the IV
information might be scattered in other variables.

We will use the disentangling techniques [19], [20] to learn
the latent IV representation through disentangling the latent
representation of X. We aim at learning a latent representation
8 = (Z, C) of X, where Z represents IVs in X and C
represents the remaining information in X. Our problem setting
is given in the following.

Problem 1: Given a joint distribution P(X, W, Y ) gener-
ated from an underlying DAG G = (X ∪ U ∪ {W, Y }, E), W
and Y are the treatment and outcome variables, respectively.
X is pretreatment variables. U contains unobserved variables
including unobserved confounders of W and Y . Suppose that
there exists at least one SIV (i.e., a set of SIVs S ⊆ X with
|S| ≥ 1). Our goal is to learn a latent IV representation Z
through the disentanglement of the latent representation 8 of
X into two disjoint sets (Z, C) for recovering the causal effect
of W on Y .

III. PROPOSED DIV.VAE METHOD

A. Proposed Disentanglement Scheme

Following the literature [19], [20], [27], we propose the
causal structure in Fig. 3 to represent the causal relationships
among W , Y , U ′, X, Z, and C, where the set X is generated
from the set of latent variables 8 = (Z, C), where Z is
the latent IV representation, and C captures the remaining
information in X.

We first show that the proposed disentanglement scheme
can estimate the causal effect of W on Y in presenting the
following theorem.

Theorem 1: Given a joint distribution P(X, W, Y ) gener-
ated from a causal DAG G = (X ∪ U ∪ {W, Y }, E), G
contains W → Y and W ← U ′ → Y in G, and ∀X ∈ X,
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Fig. 4. DIV.VAE architecture. The input X is encoded by qφZ (Z|X) and qφC (C|X) into the parameters of the latent representation. The middle dashed box is
the OPR for ensuring Z ⊥⊥ C. Samples are drawn from each of the latent representations using the reparametrized trick. The samples are then concatenated
and decoded through pθx (X|Z, C). The two gray boxes indicate the two auxiliary predictors qϕW (W |Z, C) and qϕY (Y |W, C).

X /∈ De(W ∪Y ) in G. There exists at least one SIV (i.e., a set
of SIVs S ⊆ X with |S| ≥ 1). If we learn and disentangle
simultaneously the latent representation 8 of X into two
disjoint sets (Z, C), where Z is a common cause of W and
X, and C is a common cause of X, W , and Y , respectively,
then Z is a valid IV for estimating the causal effect of W on
Y from data of P(X, W, Y ).

Proof: We prove that the IV representation Z is a valid IV
based on the disentanglement causal model. First of all, the
clause |S| ≥ 1 is to ensure that there is information of valid IVs
in the set of covariates X. In the causal DAG: 1) Z is a set
of causes of W , so Z satisfies the first condition (1) of an
IV as described in Introduction; 2) there is only a causal path
from Z to Y , i.e., Z→ W → Y , so Z affects Y only through
W , i.e., Z satisfies the second condition (2) of an IV; and 3)
there are four back-door paths from Z to Y , i.e., Z→ X←
C → Y , Z → X ← C → W ← U → Y , Z → W ← C →
Y , and Z → W ← U → Y , and all four back-door paths
are blocked by ∅ according to the back-door criterion, i.e.,
Z does not share common causes with Y , so Z satisfies the
last condition of an IV. Therefore, Z is a set of valid IVs for
estimating the causal effect of W on Y from data with latent
confounders.

Theorem 1 states that the soundness of the proposed
disentangled representation learning method relies on the
ability to learn correct representations. The conditional clause
“If we learn and disentangle simultaneously the latent
representation 8 of X into two disjoint sets (Z, C)” in the
theorem is an assumption that is unfortunately untestable in
data. Such an assumption is used in previous VAE-based
causal inference works [19], [20], [27]. Once Z is correctly
learned, the causal effect of W on Y can be unbiasedly
estimated from data with latent confounders. In real-world
applications, U may affect the learned representation of C,
but C is not used in the causal effect estimation and thus, the
uncertainty in C does not affect the unbiasedness of causal
effect W on Y .

The establishment of Theorem 1 relies on the correctness
of the disentanglement 8 = (Z, C). In this work,
we leverage VAEs to optimize a variational lower bound on
likelihood, enabling the learning of 8. This approach requires
substantially weaker assumptions about the data-generating
process and the latent variable structure as in [27], [28],

and [29]. In Section III-B, we will introduce our proposed
DIV.VAE for learning 8 and disentangling 8 into two disjoint
sets, (Z, C).

B. Finding IV Representation by Disentangled
Representation Learning

In this section, we introduce the details of the proposed
VAE-based disentangled representation learning architecture
of DIV.VAE (as shown in Fig. 4) to learn a valid IV
representation Z following the proposed scheme in Fig. 3.
Then, we can use the learned IV representation to obtain
unbiased causal effect estimation from data with latent
confounders.

The goal of our designed architecture for DIV.VAE is to
learn the latent representation 8 of X and disentangle 8 into
(Z, C) simultaneously, following the proposed causal structure
in Fig. 3. It is worth noting that C plays a critical role as
a set of auxiliary variables used to capture the information
from the set of X \ {S} in the representation learning and
disentanglement process but it is not used for the causal effect
estimation.

The proposed DIV.VAE architecture in Fig. 4 uses the
inference model and the generation model to approximate the
posterior pθX(X|Z, C) where θ is a set of generative model
parameters. For the inference model, we develop two separate
encoders qφZ(Z|X) and qφC(C|X) that serve as variational
posteriors over the latent variables. For the generative model,
the two latent representations (Z, C) are obtained from the
two separate encoders used by a single decoder pθX(X|Z, C)

to reconstruct X. Following the VAE literature [28], [29], the
prior distributions of P(Z) and P(C) are drawn from Gaussian
distributions.

In the inference model, the variational approximations of
the posteriors are defined as

qφZ(Z|X) =

|Z|∏
i=1

N
(
µ = µ̂Zi , σ

2
= σ̂ 2

Zi

)
qφC(C|X) =

|C|∏
i=1

N
(
µ = µ̂Ci , σ

2
= σ̂ 2

Ci

)
(1)

where µ̂Zi , µ̂Ci and σ̂ 2
Zi

, σ̂ 2
Ci

are the means and variances of
the Gaussian distributions parameterized by neural networks,
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respectively. Note that, since one IV is sufficient for obtaining
unbiased causal effect estimation, we use |Z| = 1 in the
experiments on real-world datasets. However, in the algorithm
design, we keep Z as multidimensional for a general solution.

The prior distributions of (Z, C) are defined as

P(Z) =

|Z|∏
i=1

N (Z i |0, 1); P(C) =

|C|∏
i=1

N (Ci |0, 1). (2)

The generative models for W and X are defined as

pθW (W |Z, C) = Bern(σ (g1(Z, C)))

pθx(X|Z, C) =

|X|∏
i=1

P(X i |Z, C) (3)

where P(X i |Z, C) is the distribution for the i th measured
variable, g1(·) is the function parameterized by neural
networks, and σ(·) is the logistic function.

The generative model for Y depends on the data type
of Y . For continuous Y , we sample it from a Gaussian
distribution with its mean and variance given by the mutually
exclusive neural networks that define P(Y |W = 0, Z, C) and
P(Y |W = 1, Z, C), respectively, and the generative model of
Y is defined as

P(Y |W, C) = N
(
µ = µ̂Y , σ 2

= σ̂ 2
Y

)
µ̂Y = W · g2(C)+ (1−W ) · g3(C)

σ̂ 2
Y = W · g4(C)+ (1−W ) · g5(C) (4)

where g2(·), g3(·), g4(·), and g5(·) are the functions parame-
terized by neural networks. For binary Y , we parameterize it
with a Bernoulli distribution, and the model is defined as

pθY (Y |W, C) = Bern(σ (g6(W, C))) (5)

where g6(·) is a neural network with its own parameters.
Given the joint distribution P(X, W, Y ), the parameters can be
optimized by maximizing the evidence lower bound (ELBO)
M [28]

M = EqφZ qφC

[
log pθx(X|Z, C)

]
− DKL

[
qφZ(Z|X)||P(Z)

]
− DKL

[
qφC(C|X)||P(C)

]
(6)

where DKL[·||·] is a Kullback-Leibler (KL) divergence term.
To learn the latent IV representation Z from the set of SIVs

S and the latent representation C from the remaining variables
X\{S}, we add two auxiliary predictors to the above variational
ELBO to ensure that the treatment variable W and the outcome
variable Y can be estimated from Z and C as designed. Thus,
we have the following objective function:

L′ = −M+ αW EqφZ qφC

[
log qϕW (W |Z, C)

]
+ αY EqφC

[
log qϕY (Y |W, C)

]
(7)

where αW and αY are the weights for the two auxiliary
predictors.

In practice, there may be some very weak associations
between Z and C. To encourage Z ⊥⊥ C as specified in

Fig. 3, we employ the orthogonality promoting regularization
(OPR) [30] for our proposed DIV.VAE

L = L′ +
1
b

b∑
i=1

CS(Zi , Ci ) (8)

where b is the batch size of the neural network, and
CS(Zi , Ci ) = ((ZT

i Ci )/(∥Zi∥2∥Ci∥2)) is the cosine similarity
(CS).

After training DIV.VAE, we draw Z from the model and
feed it into the function of Ortho.IV [22], [23] for calculating
βwy . When the learned distribution of Z is close to the
true unmeasured IV distribution, the DIV.VAE method has
the ability to obtain an unbiased estimate βwy as shown in
the experimental results. Notably, the main advantage of our
DIV.VAE is that it no longer requires domain knowledge or
experts to provide a valid IV. Instead, it only requires the
presence of an SIV in the data. This is a weaker assumption
compared to those required by other methods such as two-
stage least squares (TSLS), forest for IV regression (FIVR),
deep ensemble method for the IV (DeepIV), and IV.Tetrad.

Limitations: The soundness of DIV.VAE relies on the ability
of the proposed VAE architecture to learn 8 and disentangle
the latent variable 8 into (Z, C). However, VAE-based
methods are susceptible to the problem of unidentifiability
in the VAE model [31], [32]. In other words, there is no
theoretical guarantee that the learned IV representation Z can
always approximate the true latent IV. Fortunately, as shown
in our experiments, in the presence of SIV, the learned
IV representation Z by DIV.VAE closely approximates the
true latent IV. We note that identifiable VAE (iVAE) gives
an identifiability guarantee but with more limitations [32].
iVAE assumes injective and linear relationships and a latent
presentation learned by iVAE needs its child variable and
parent variables to be observed. These additional requirements
limit the application of a method based on iVAE and make it
infeasible for iVAE to recover the IV representation from the
error term of SIV. VAE does not guarantee the identifiability
but has some advantages, such as not requiring linear and
injective relationships or Z’s parent to be observed for its
representation learning. However, users should review their
results by DIV.VAE with domain knowledge and perform
sensitivity analyses [8] before taking the results.

IV. EXPERIMENTS

A. Experimental Setup

1) Baseline Causal Effect Estimators: We compare
DIV.VAE with four representative IV-based estimators and two
VAE-based causal effect estimators. In three of the IV-based
estimators, TSLS regression [9], causal random FIVR [33],
and the popular DeepIV [34], each requires a given IV,
whereas the other IV-based estimator, IV.Tetrad [13], does not
require a given IV, but needs the majority of variables in X
to be valid IVs. The two VAE-based estimators are causal
effect VAE (CEVAE) [27] and treatment effect by disentangled
VAE (TEDVAE) [20]. These two estimators assume no latent
confounder between (W, Y ). They have been used in our

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: RMIT University Library. Downloaded on December 16,2024 at 03:14:07 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

experiments since our DIV.VAE is also based on the VAE
model.

2) Evaluation Metrics: For synthetic datasets with the
ground-truth βwy , we use the estimation bias |(β̂wy − βwy)/

βwy | ∗ 100 (%) to demonstrate the performance of all
estimators. For the real-world datasets, we evaluate all
estimators against the reference causal effects in the literature.

3) Implementation Details: DIV.VAE is implemented by
using Python with packages including PyTorch [35], Pyro [36],
and EconML [37]. The implementation of TSLS is based
on the functions glm and ivglm in the R packages stats
and ivtools [11]. FIVR is implemented using the function
instrumental forest in the R package grf [33]. DeepIV
is retrieved from the authors’ GitHub.2 IV.Tetrad is also
retrieved from the authors’ site.3 CEVAE is implemented using
the function CEVAE in the Python package Pyro [36] and
TEDVAE is obtained from the authors’ GitHub.4

In our experiments, we evaluate the performance of
DIV.VAE against the above baselines on simulated and real-
world data. We will provide the ablation experiments of our
DIV.VAE and the empirical evaluation on the independence
relation of Z and C in Sections IV-H and IV-I, respectively.

B. Simulation Study

We utilize the true DAG over X ∪ U ∪ {W, Y } as shown
in Fig. 5 to generate the synthetic datasets with latent
variables for the experiments by following the literature [38].
We generate datasets with a range of sample sizes: 0.5k, 2k,
4k, 6k, 8k, 10k, 50k, 100k, and 200k. The set of measured
variables X consists of {S, X1, X2, X3, X4, X5, X6, X7, W, Y }.
The DAG also include three latent variables {U, U1, U2} in
the data, where U affects both W and Y . The details of data
generation are introduced as follows.

The synthetic datasets are generated based on the
DAG in Fig. 5, and the specifications are as fol-
lows: Z ∼ N (0, 1); U1, U2 ∼ N (0, 1); X1, X3, X5,

X7 ∼ N (0, 1); ϵ1,2,3,4,S ∼ N (0, 0.5); S ∼ N (0, 1) + Z +
ϵS;U ∼ N (0, 1) + 0.8 ∗ X1 + ϵ1; X2 ∼ N (0, 1) + 2 ∗ U +
ϵ2; X4 ∼ N (0, 1)+U1+ ϵ3; andX6 ∼ N (0, 1)+ 0.6 ∗U2+ ϵ4,
where N (, ) denotes the normal distribution. The treatment
assignment W is generated from n (where n is the sample size)
Bernoulli trials by using the assignment probability based on
the measured variables {X4, X5} and latent variables {U, U2}

as P(W = 1|U, Z , X4, X5, U2) = [1 + exp{2 − 2 ∗ U − 2 ∗
Z − 3 ∗ X4 − X5 − 3 ∗U2}]

−1.
In this work, we generate two types of potential outcomes,

i.e., a linear function Ylinear and a nonlinear function Ynonlinear
for evaluating the ability of DIV.VAE in terms of causal effect
estimation. Ylinear = 2 + 2 ∗ W + 2 ∗ U + 3 ∗ U1 + 2 ∗ X3 +

2 ∗ X6 + 2 ∗ X7 + ϵw, where ϵw ∼ N (0, 1), and Ynonlinear =

2+2∗W +2∗U +3∗U1+2∗ X3+2∗ X2
6+2∗ X7+ϵw. Note

that the causal effect of W on Y is fixed to 2, i.e., βwy = 2 on
all synthetic datasets.

2https://github.com/jhartford/DeepIV
3http://www.homepages.ucl.ac.uk/~ucgtrbd/code/iv_discovery
4https://github.com/WeijiaZhang24/TEDVAE

Fig. 5. True causal DAG with a latent confounder U between W and Y
is used to generate the synthetic datasets. Z and S are a latent IV and an
SIV, respectively. {U1, U2} are the two latent variables, and other measured
variables are pretreatment variables of (W, Y ).

To avoid the random noises brought by data generation
process, we repeatedly generated 30 datasets for each sample
size. In our simulation experiments, we use the SIV S in the
underlying causal DAG as the known IV for the compared
IV-based estimators, TSLS, FIVR, and DeepIV.

1) Performance of DIV.VAE on Causal Effect Estimation:
The estimation biases of all estimators on synthetic datasets
with Ylinear and synthetic datasets Ynonlinear are visualized with
boxplots in Figs. 6 and 7, respectively.

Results: From the experimental results, we have the
following observations.

1) On all synthetic datasets, DIV.VAE consistently exhibits
low bias and small variance, outperforming all compared
estimators as the sample size increases.

2) DIV.VAE and FIVR both have low bias across all
datasets with Ylinear, but the performance of DIV.VAE
is more stable than FIVR. For smaller-sized datasets,
DIV.VAE has a smaller variance and bias than FIVR.
This is because FIVR uses SIV, which is a proxy of
IV and this results in large variance with finite samples.
DIV.VAE uses Z, the representation of the IV. When
the representation is learned properly, the estimation of
DIV.VAE is unbiased.

3) For the two VAE-based estimators, CEVAE and
TEDVAE, they have relatively low variances, but
compared to DIV.VAE, their biases are much larger on
both types of synthetic datasets since both methods do
not allow a latent confounder U between (W, Y ).

4) TSLS and DeepIV exhibit small biases on both types of
datasets since they use the true SIV as a valid IV.

5) IV.Tetrad performs consistently poorly since the majority
of valid IV assumptions does not hold on both types of
datasets.

2) Correctness of Learned IV Representation Z: We
examine the quality of the learned representation Z by
visualizing the probability density functions (pdfs) of the
ground-truth IV and the learned IV representation Z. We use
the learned IV representation Z from the data with Ylinear for
the visualization in Fig. 8. We have the following observations
from Fig. 8: 1) the learned IV representation Z approximates
the ground-truth pdf very well even when the sample size is
small and 2) as the sample size increases, the pdf of learned IV
representation Z closely matches the ground-truth pdf. Thus,
DIV.VAE can learn the correct IV representation from data
with latent confounders.
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Fig. 6. Estimation biases over 30 synthetic datasets with Ylinear for different estimators, where the horizontal axis represents the sample size and the vertical
axis represents the estimation bias (%). FIVR performs competitively with DIV.VAE in large datasets. FIVR needs a given IV whereas DIV.VAE does not.

Fig. 7. Estimation biases over 30 synthetic datasets with Ynonlinear for different estimators, where the horizontal axis represents the sample size and the
vertical axis represents the estimation bias (%). DeepIV performs competitively with DIV.VAE in large datasets. DeepIV needs a given IV whereas DIV.VAE
does not.

To sum up, DIV.VAE is effective in achieving accurate and
stable causal effect estimation from data without giving an IV.

C. Experiments on Three Real-World Datasets

In this section, we conduct experiments on two commonly
used benchmark datasets with known IVs, Vitamin D
(VitD) [39] and Schooling Returns [40]. The empirical

estimates of the causal effects of the two datasets are
widely accepted. Another dataset, Sachs, is from a real
application [41]. There is no nominated IV variable for Sachs.

1) VitD Data: VitD is a cohort study of VitD on mortality
reported in [39]. The data contain 2571 individuals and five
variables: age, filaggrin (a binary variable indicating filaggrin
mutations), vitd [a continuous variable measured as serum
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TABLE I
RESULTS OF ALL ESTIMATORS ON THE THREE REAL-WORLD DATASETS. THE ESTIMATED CAUSAL EFFECTS WITHIN THE 95% CONFIDENCE INTERVAL

ARE HIGHLIGHTED. “-” INDICATES THAT A METHOD IS NOT APPLICABLE SINCE NO IV IS GIVEN ON THE SACHS DATASET

Fig. 8. PDFs of the ground-truth IV and the learned representation Z , where
the horizontal axis represents the value and the vertical axis represents the
density.

25-OH-D (nmol/L)], time (follow-up time), and death (binary
outcome indicating whether an individual died during follow-
up) [11]. The measured value of VitD less than 30 nmol/L
implies VitD deficiency. The indicator of filaggrin is used as
an instrument [39]. We take the estimated β̂wy = 2.01 with
95% conditional interval (0.96, 4.26) from the work [39] as
the reference causal effect.

2) Schoolreturning: The data are from the National
Longitudinal Survey of Youth (NLSY), a well-known dataset
of U.S. young employees, aged range from 24 to 34 [40].
The treatment is the education of employees, and the outcome
is raw wages in 1976 (in cents per hour). The data contain
3010 individuals and 19 covariates. The covariates include
experience (years of labor market experience), ethnicity (factor
indicating ethnicity), resident information of an individual,
age, nearcollege (whether an individual grew up near a 4-year
college?), marital status, father’s educational attainment, and
mother’s educational attainment. A goal of the studies on
this dataset is to investigate the causal effect of education on
earnings. Card [40] used geographical proximity to a college,
i.e., the covariate nearcollege as an instrument variable.
We take β̂wy = 0.1329 with 95% conditional interval (0.0484,
0.2175) from [42] as the reference causal effect.

3) Sachs: This data is collected from cell activity measure-
ments for single-cell data under a variety of conditions [41].
Following the work [13], we focus on a single condition, i.e.,
simulation with anti-CD3 and anti-CD28. The data contain
853 records and 11 variables [41]. The treatment is the

manipulation of concentration levels of molecule Erk. The
outcome is the concentration of Akt. The other nine cell
products are pretreatment variables [41]. The data have some
weak correlations among variables, but we assume that there
are no conditional independencies held between Erk and the
remaining ten variables. Note that there is not a given IV.
We take the estimated β̂wy = 1.43 from the literature [13] (i.e.,
IV.Tetrad’s estimated value) as the reference causal effect.

4) Results: From the results in Table I, we see the estimated
causal effects of DIV.VAE for VitD and Schooling Returns are
in their empirical intervals. On Sachs, the estimated causal
effects by DIV.VAE are close to IV.Tetrad’s estimated value.
These results confirm that DIV.VAE is capable of recovering a
latent IV representation from data. The causal effects estimated
by IV.Tetrad are in the empirical intervals of VitD and
Schooling Returns since both datasets are low dimensional and
satisfy the assumptions of IV.Tetrad. The other baselines either
work well on VitD, or work well on Schooling Returns, but not
on both. The Sachs dataset is not applicable to TSLS, FIVR,
and DeepIV since the dataset does not have a nominated IV.
The two VAE-based methods do not work well on the Sachs
dataset.

In sum, DIV.VAE, without needing a nominated IV,
performs better or competitively with the state-of-the-art
IV-based or VAE-based estimators on the three real-world
datasets, further confirming the effectiveness of the proposed
DIV.VAE method and suggesting the potential of DIV.VAE in
real-world applications.

D. Evaluation in Higher Dimension With Tabular Data

To evaluate the performance of our DIV.VAE with higher
dimensional datasets, we generate synthetic datasets with a
range of sample sizes: 0.5k, 2k, 4k, 6k, 8k, and 10k, and
varying the number of measured variables as 8, 16, 32, and
64 using the same process described in Section IV-B.

Note that 64 variables are not considered as high
dimensional in general machine learning settings. In causal
effect estimation, however, the variables are not many since
pretreatment variables are handpicked by domain experts [8].
We do not run DIV.VAE in a high-dimensional setting due to
the faithfulness assumption it requires. Higher dimensionality
is not a problem for DIV.VAE, but will pose a problem
for simulation data generation. A dataset generated needs
to be faithful to the underlying DAG for data generation,
and to preserve the conditional independencies among a
large number of variables, the size of the dataset (i.e., the
number of samples) needs to be very large. A dataset with a
large number of samples takes a long time for representation
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TABLE II
ESTIMATION BIAS OF DIV.VAE IN EACH SETTING OVER 30 SYNTHETIC DATASETS (MEAN ± STD)

Fig. 9. (a) True causal DAG for image data. X is replaced by image data,
i.e., an image of two handwritten digits. (b) Estimation biases over 30 times
for image data, where the horizontal axis represents the sample size and the
vertical axis represents the estimation bias (%).

learning with VAE. This is why we just vary the number of
variables up to 64.

We use the synthetic datasets with Ylinear to examine the
performance of DIV.VAE in this section. For each setting,
we generate 30 datasets repeatedly to reduce the impact of
random noise, as described in Section IV-B.

Results: We report the experimental results in Table II.
We have the following observations.

1) As the number of variables increases, DIV.VAE has
a large estimation bias. This is because a higher
dimensional dataset needs a significantly larger dataset
to ensure that the dataset and the underlying causal
DAG are faithful to each other. When the faithfulness
assumption is not satisfied, both bias and variance of
estimates are large.

2) An increase in the number of samples results in a
decrease in the bias. The reason is the same as before.
Therefore, in the case of handling high-dimensional
data, DIV.VAE requires a large sample size to reduce
estimation bias.

E. Capability of DIV.VAE in Image Data

In Sections IV-B–IV-D, we demonstrated the performance
of DIV.VAE on both simulated and real-world relational
datasets. However, in many applications, we do not have
variables in table format and pixels do not have distinct
semantic meaning as traditional variables. Instead, the learned
representations of images can be mapped to traditional
variables with semantic meaning. We design this experiment
to demonstrate the capability of DIV.VAE with image data.

To simulate this, we replaced the covariates X with the
pixels of two handwritten digits from the modified national
institute of standards and technology (MNIST) dataset [43]
as done in the literature [44], [45]. The dimension of X is
2 ∗ 28 ∗ 28 = 1568. The datasets are generated based on

the DAG in Fig. 9(a), and the specifications are as follows:
U ′ ∼ N (0, 0.05), where N (, ) denotes the normal distribution.
The treatment assignment W is generated from n (where
n is the sample size) Bernoulli trials using the assignment
probability based on variables {Z, C}, where Z represents
the ten digits of a two-digit handwritten number (i.e., IV),
and C represents the one digit of a two-digit handwritten
number and latent variables {U ′} as P(W = 1|Z, C, U ′) =
[1+ exp{2−U ′ − Z− C}]−1. The outcome is formulated by
Y = 2 ∗C+ 10 ∗W +U ′ + ϵy . Note that the causal effect of
W on Y is fixed at 10.

To demonstrate the representation learning ability of
DIV.VAE, we consider an Oracle setting as the baseline. The
Oracle set can access the outcome label from image data. Z
and C are read from a two-digit handwritten number. Note
that in this case, bias is not zero because of {U ′} and ϵy .
Instead, DIV.VAE learns the representation of Z and C from
X (i.e., a two-digit handwritten number, by concatenating or
combining two images from the MNIST dataset).

Results: The results are visualized in Fig. 9(b) with the
mean and standard deviation (std) of 30 runs. The Oracle
generates some estimation bias due to inconsistency between
the generated datasets and the true causal DAG. This bias
decreases as the sample size increases. DIV.VAE performs
worse than Oracle with small sample sizes but improves
significantly as the sample size grows. At sample sizes of
10k and 50k, DIV.VAE performs similarly to the Oracle,
demonstrating its ability to extract valid IV from high-
dimensional image data.

F. Parameter Analysis

With the DIV.VAE algorithm, two tuning parameters,
namely, αW and αY , are used to balance LELBO and
the two classifiers. We examine the parameter settings
αW and αY across a range of values, specifically
{0.01, 0.1, 1, 10, 100, 1000, 10 000}, to analyze the sensitivity
of DIV.VAE on synthetic datasets with a sample size of 10k.
Note that the package Pyro requires αW and αY to be the same.
These datasets are generated using the same data generation
process presented in Section IV-B. The estimation biases of
DIV.VAE are reported in Table III. From Table III, we observe
that DIV.VAE achieves the smallest estimation bias when both
parameters, αW and αY , are set to 100. There is a need to tune
parameters αW and αY in an application.

G. Evaluation of the Dimension of Latent IV Representation

In our implementation, we set |Z| to 1 in the disentangling
process. We use this experiment to demonstrate the effective-
ness of the setting. To do so, we use the same data generation
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TABLE III
ESTIMATION BIAS IN DIFFERENT SETTINGS AND DIFFERENT

VALUES OF TUNING PARAMETERS αW AND αY

Fig. 10. True causal DAG with a latent common cause U between W and Y
is used to generate the synthetic datasets. {Z1, Z2} and {S1, S2} are latent IVs
and SIVs, respectively. {U1, U2} are two latent variables, and other measured
variables are pretreatment variables of (W, Y ).

Fig. 11. True causal DAG with a latent common cause U between W and
Y is used to generate the synthetic datasets. {Z1, Z2, Z3} and {S1, S2, S3} are
latent IVs and SIVs, respectively. {U1, U2} are two latent variables, and other
measured variables are pretreatment variables of (W, Y ).

process as used in Section IV-B with three causal DAGs in
Figs. 5, 10, and 11 to generate three groups of synthetic
datasets such that the three groups of datasets contain one SIV,
two SIVs, and three SIVs, respectively, with other variables
and causal relationships remaining unchanged. We repeatedly
generate 30 datasets for each group to avoid bias in data
generation. The estimation biases of DIV.VAE on the three
groups of synthetic data are reported in Fig. 12.

The second group of datasets are generated from the
DAG in Fig. 10. The generation processes different from
Section IV-B are discussed in the following: Z1, Z2 ∼

N (0, 1); ϵS1,S2 ∼ N (0, 0.5); S1 ∼ N (0, 1) + Z1 + ϵS1; and
S2 ∼ N (0, 1)+ Z2 + ϵS2 .

The treatment assignment W is generated from n
Bernoulli trials by using the assignment probability P(W =
1|U, Z1, Z2, X4, X5, U2) = [1+ exp{2− 2 ∗U − 2 ∗ Z1 − 2 ∗
Z23∗ X4− X5−3∗U2}]

−1. The generation processes of other
variables are the same as done in Section IV-B.

The third group of datasets is generated from the
DAG in Fig. 11. The generation processes different from
Section IV-B are discussed in the following: Z1, Z2,

Z3 ∼ N (0, 1); ϵS1,S2,S3 ∼ N (0, 0.5); S1 ∼ N (0, 1) + Z1 +

ϵS1; S2 ∼ N (0, 1)+ Z2 + ϵS2; andS3 ∼ N (0, 1)+ Z3 + ϵS3 .
The treatment assignment W is generated from n Bernoulli

trials by using the assignment probability: P(W =

1|U, Z1, Z2, Z3, X4, X5, U2) = [1+exp{2−2∗U−2∗Z1−2∗
Z2−2∗Z3+3∗X4−X5−3∗U2}]

−1. The generation processes
of other variables are the same as discussed in Section IV-B.

From Fig. 12, we see that the estimation biases of DIV.VAE
on all three groups of synthetic datasets are consistently small.
That means it is safe to set |Z| to 1 for DIV.VAE when we have
no enough knowledge about the number of SIVs in real-world
datasets.

H. Ablation Study

Here, we develop a variant DIV.VAE to explore the
component of the OPR for the average causal effect estimation
from data with latent confounders. The variant of DIV.VAE is
the loss function in (7) in the main text without the OPR term.
The variant DIV.VAE is referred to as DIV.VAEw/o.OPR.

We conduct the ablation study experiment on the synthetic
datasets that are used in Section IV-B of the main text
to show the performance of the proposed DIV.VAE with
DIV.VAEw/o.OPR. The experimental results are visualized
in Fig. 13.

Results: From the results in Fig. 13, DIV.VAEw/o.OPR has a
larger estimation bias than DIV.VAE on all synthetic datasets.
Moreover, the variance of DIV.VAEw/o.OPR is also larger than
DIV.VAE. The observations show the importance of the OPR
in learning and disentangling the latent IV representation Z
from the latent representation 8 = (Z, C) for causal effect
estimation from data with latent confounders.

I. Empirical Evaluation on the Independence Relation of Z
and C

In this section, we conduct an empirical evaluation of the
independence relation of Z and C by using the synthetic
datasets generated in Section IV-B. In the empirical evaluation,
we use the Pearson product-moment correlation coefficients
(PCCs) as the evaluation index. In general, two variables
are unrelated when PCC is less than 0.3. We report the
mean with the std over 30 replications. In all experiments,
|Z| = 1 and |C| = 10. Hence, we calculate the PCC of each
pair (Z , Ci ) where Ci ∈ C. The PCCs of each pair (Z , Ci ) in
(Z, C) by using DIV.VAEw/o.OPR and DIV.VAE are reported in
Tables IV and V, respectively.

Results: From Tables IV and V, we have three observations:
1) the PCC between Z and each Ci in C is less than 0.3, i.e.,
Z and each Ci in C are uncorrelated; 2) as the sample
increases, the mean of the PCCs between Z and each Ci in C
dropped significantly; and 3) as the sample increases, the std
of the PCCs between Z and each Ci in C is also decreased.

Therefore, these results show that Z and each Ci in C are
well-disentangled.

By comparing Tables IV and V, we know that the
PCCs of DIV.VAE is significantly smaller than the PCCs
of DIV.VAEw/o.OPR’s on all synthetic datasets. It further
confirms that the OPR term plays an important role in
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TABLE IV
PCCS OF EACH PAIR OF (Z , Ci ) FOR DIV.VAEW/O.OPR (MEAN ± STD)

TABLE V
PCCS OF EACH PAIR OF (Z , Ci ) FOR DIV.VAE (MEAN ± STD)

Fig. 12. Experimental results of DIV.VAE on all three groups of synthetic datasets with |Z| = 1, where the horizontal axis represents the sample size and
the vertical axis represents the estimation bias (%). Mismatching between the number of latent IVs and the number of SIVs does not cause performance
deterioration.

encouraging Z ⊥⊥ C in learning and disentangling the latent
IV representation Z from the latent representation 8 = (Z, C)

of X.

V. RELATED WORK

In this section, we review the research closely related to
this work, including IV-based methods with a given IV, data-
driven IV-based methods without a given IV, and deep learning
(including VAE)-based causal effect estimation.

A. IV-Based Methods With a Given IV

In practice, before we use an IV method, one needs
to nominate a valid IV based on domain knowledge.

Under the assumption that a valid IV has been given,
several IV-based counterfactual prediction methods have been
developed for heterogeneous causal effect estimation, such
as instrumental random forest regression [33], generalized
method of moments (GMMs) [46], DeepIV [34], and kernel
IV (KIV) regression [47]. Yuan et al. [45] proposed a novel
AutoIV algorithm to automatically generate IV representation
for the downstream IV-based counterfactual prediction under
the assumption that the latent confounder between W and
Y is independent of the set of measured covariates, but
this assumption may be violated in many real applications.
Furthermore, AutoIV requires S ⊥⊥ Y |W , which is more strict
than DIV.VAE. Hence, AutoIV does not solve the same
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Fig. 13. Ablation study of DIV.VAE on synthetic datasets, where the
horizontal axis represents the sample size and the vertical axis represents
the estimation bias (%).

problem as DIV.VAE does and is not compared in the
experiments. Different from the abovementioned IV methods,
we focus on learning a valid IV representation from data
without nominating a valid IV from domain knowledge.

B. Data-Driven IV-Based Method Without a Given IV

In the absence of a given IV, a few data-driven methods
have been proposed for finding valid IVs [13] or synthesizing
IVs [48], [49] or eliminating the effect of invalid IVs
by using statistical analysis [14], [50], [51]. For example,
IV.Tetrad [13] uses the tetrad constraint to perform statistical
tests for discovering pairs of valid IVs. Kuang et al. [49]
proposed the Ivy method to combine IV candidates as a
summary IV for identifying all invalid IVs or dependencies.
Kang et al. [14] proposed the sisVIVE method to estimate
causal effects when at least half of the covariates are valid IVs
(i.e., majority assumption). Hartford et al. [51] developed a
ModeIV algorithm by employing a deep learning-based IV
estimator [34] under the majority assumption. Both sisVIVE
and ModeIV rely on the majority assumption, but it is
difficult to verify the majority assumption and this limits their
applications. Unlike this type of data-driven method, DIV.VAE
only needs an SIV and makes use of VAE to recover IV
information.

C. Deep Learning (Including VAE)-Based Causal Effect
Estimation

The existing VAE-based causal effect estimators [19],
[20], [27] simply assume no latent confounders, and thus,
they are not for dealing with latent confounders. Moreover,
this type of VAE-based estimator relies on an impractical
assumption [44], i.e., they require all covariates to be
measured as the proxy variables of the latent confounders
or latent representations [27]. Under the unconfoundedness
assumption, researchers focus on designing deep learning
models for estimating causal effects from observational

data, e.g., balance learning representation (BLR) neutral
network [52], counterfactual regression (CFR) [53], and
generative adversarial nets for estimating individualized
treatment effects (GANITE) [54]. However, none of these deep
learning-based estimators can obtain an unbiased estimation
of the causal effect of W on Y in the presence of a latent
confounder between (W, Y ). Hence, this work is the first
one to use the VAE model in learning and disentangling the
latent IV representation from the latent representation of the
measured covariates for causal effect estimation from data
without the unconfoundedness assumption.

When there is a latent confounder between (W, Y ), the
causal effect of W on Y is nonidentifiable with covariate
adjustment [1], [55] and these deep learning methods do
not work as they are based on covariate adjustment. Our
method takes the IV approach, a practical way to address this
challenging problem very well.

VI. CONCLUSION

Causal effect estimation from data with latent variables
is crucial for many real-world applications, but there is a
lack of effective data-driven methods for dealing with latent
confounders. In this work, we make a connection between
SIVs studied in the causal inference and statistics communities
and the VAE model widely used in the machine learning
community for latent representation learning. This connection
has provided the theoretical guarantees for us to develop the
DIV.VAE method to learn the latent IV representation through
VAE-based disentangled representation learning. This, in turn,
enables us to leverage the IV approach to obtain unbiased
causal effect estimation from data in the presence of latent
confounders. To the best of authors’ knowledge, this is the
first work to establish a link between generative modeling
and the IV approach. Extensive experiments on synthetic
and real-world datasets demonstrate that DIV.VAE is very
effective in estimating the average causal effect from data with
latent variables. We believe that the findings presented in this
work have the potential to significantly improve the real-world
applications of the IV approach for inferring unbiased causal
effects from data with latent variables.

In our future work, we plan to explore connections
between balanced representation learning [8], [53], proximal
causal learning [18], [56], and latent IV representation
learning using the disentanglement technique presented in
this work. Furthermore, we will extend our DIV.VAE to
applications in recommendation systems [57], natural language
processing [58], and other areas [59].
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