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Abstract. Much research has been devoted to the problem of learning
fair representations; however, they do not explicitly state the relationship
between latent representations. In many real-world applications, there
may be causal relationships between latent representations. Furthermore,
most fair representation learning methods focus on group-level fairness
and are based on correlation, ignoring the causal relationships under-
lying the data. In this work, we theoretically demonstrate that using
the structured representations enables downstream predictive models to
achieve counterfactual fairness, and then we propose the Counterfactual
Fairness Variational AutoEncoder (CF-VAE) to obtain structured repre-
sentations with respect to domain knowledge. The experimental results
show that the proposed method achieves better fairness and accuracy
performance than the benchmark fairness methods.

Keywords: Counterfactual Fairness · Representation Learning ·
Variational AutoEncoder

1 Introduction

Machine learning algorithms have gradually penetrated into our life [23] and have
been applied to decision-making for credit scoring [16], crime prediction [14] and
loan assessment [5]. The fairness of these decisions and their impact on individ-
uals or society have become an increasing concern. Some extreme unfair inci-
dents have appeared in recent years. For example, COMPAS, a decision support
model that estimates the risk of a defendant becoming a recidivist was found
to predict higher risk for black people and lower risk for white people [1]; Face-
book users receive a recommendation prompt when watching a video featuring
blacks, asking them if they’d like to continue to watch videos about primates [21].
These incidents indicate that the machine learning models become a source of
unfairness, which may lead to serious social problems. Since most models are
trained with data, which will lead to unfair decisions due to discrimination in
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Fig. 1. (a) The process of existing works on learning fair representations to make
predictions. (b) The process of our work. A is the set of sensitive attributes; X is the
set of other observed attributes; Za is the representation of A; Y is the target attribute;
Zx is the representation of X; Z

′
x is the structured representation of X with respect to

the conceptual level causal graph Gc. The dotted line denotes the prediction process.

the training data. Therefore, the key issue for solving unfair decisions becomes
whether we can eliminate these discrimination embedded in the data through
algorithms [23].

To obtain fair decisions, many methods [6,10,20,22,25,31] are proposed to
learn fair representations through two competing goals: encoding data as much
as possible, while eliminating any information that transfers through the sen-
sitive attributes. To separate the information from sensitive attributes, various
extensions of Variational Autoencoder (VAE) consider minimising the mutual
information among latent representations [6,20,25]. For example, Creager et al.
[6] introduced disentanglement loss into the VAE objective function to decom-
pose observed attributes into sensitive latents and non-sensitive latents to achieve
subgroup level fairness; Park et al. [25] improved the above methods and pro-
posed the mutual attribute latent (MAL) to retain only beneficial information
for fair predictions.

The existing methods [6,20] follow Fig. 1a to achieve fair predictions. Specif-
ically, these methods learn fair representations Zx without stating any relation-
ships between Zx1 and Zx2, which may not satisfy the domain knowledge. Let
us consider an example where we aim to predict a person’s salary using some
observed attributes. Following the domain knowledge, we know that people’s
salary is determined by two semantic concepts, intelligence and career respec-
tively. We also note that people’s intelligence determines their career with high
probability, which can be expressed as a conceptual level causal graph Gc, i.e.,
Intelligence → Career. Therefore, we need a method as shown in Fig. 1b that not
only ensures the representation of observed attributes with no sensitive informa-
tion but also retains causal relationships with respect to domain knowledge.

On the measurement of fairness, all fair representation learning methods
use fairness metrics based on correlation, including the VAE-based methods
[6,20,25]. It is well known that correlation does not imply causation. Recent
studies [26,32] have shown that quantifying fairness based on correlation may
produce higher deviations. Counterfactual fairness is a fundamental framework
based on causation. With counterfactual fairness, a decision is fair towards an
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individual if it is the same in the actual world and in the counterfactual world
when the individual belongs to a different demographic group [17].

In this paper, we follow the counterfactual fairness and propose a VAE-based
unsupervised fair representation learning method, namely Counterfactual Fair-
ness Variational AutoEncoder (CF-VAE). We make the following contributions
in this paper:

– We propose CF-VAE, a novel VAE-based unsupervised counterfactual fair-
ness method. CF-VAE can learn structured representations with no sensitive
information and retain causal relationships with respect to the conceptual
level causal graph determined by domain knowledge.

– We theoretically demonstrate that the structured representations obtained
by CF-VAE are suitable for training counterfactually fair predictive models.

– We evaluate the effectiveness of the CF-VAE method on real-world datasets.
The experiments show that CF-VAE outperforms existing benchmark fairness
methods in both accuracy and fairness.

2 Background

We use upper case letters to represent attributes and boldfaced upper case letters
to denote the set of attributes. We use boldfaced lower case letters to represent
the values of the set of attributes. The values of attributes are represented using
lower case letters.

Let A be the set of sensitive attributes; X be the set of other observed
attributes; V be the set of all observed attributes, i.e., V = {A,X}; Y be the
target attribute. We use ̂Y (·) to represent the predictor. Gc is the conceptual
level causal graph and represents domain knowledge. The nodes shown in Gc are
“concepts”, each of which represents a set of observed attributes that have similar
meanings. Each “concept” has causal relationships with the other “concepts”.

In this paper, a causal graph is used to represent a causal mechanism. In
a causal graph, a directed edge, such as Vj → Vi denotes that Vj is a parent
(i.e., direct cause) and we use pai to denote the set of parents of Vi. We follow
Pearl’s [26] notation and define a causal model as a triple (U,V,F): U is a set
of the latent background attributes, which are the factors not caused by any
attributes in the set V = {A,X}; F is a set of deterministic functions, Vi =
fi(pai, Upai

), such that pai ⊆ V\{Vi} and Upai
⊆ U. Besides, some commonly

used definitions in graphical causal modelling, such as faithfulness, d-separation
and causal path can be found in [26,27].

With the causal model (U,V,F), we have the following definition of coun-
terfactual fairness:

Definition 1. (Counterfactual Fairness [17]). Predictor ̂Y (·) is counterfac-
tually fair if under any context X = x and A = a, P (̂YA←a(U) = y | X =
x,A = a) = P (̂YA←ā(U) = y | X = x,A = a), for all y and for any value ā
attainable by A.
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Counterfactual fairness is considered to be related to individual fairness [17].
Individual fairness means that similar individuals should receive similar pre-
dicted outcomes. The concept of individual fairness when measuring the simi-
larity of the individual is unknowable, which is similar to the unknowable dis-
tance between the real-world and the counterfactual world in counterfactual
fairness [18].

3 Proposed Method

In this section, we first theoretically demonstrate that learning counterfactually
fair representations are feasible. Then, we propose the Counterfactual Fairness
Variational AutoEncoder (CF-VAE) to obtain the structured representations for
predictors to achieve counterfactual fairness.

3.1 The Theory of Learning Counterfactually Fair Representations

We discuss what types of representations enable downstream predictive models
to achieve counterfactual fairness. Following the work in [17], the implication of
counterfactual fairness is described as follows:

Definition 2. (Implication of Counterfactual Fairness [17]). Let G be
the causal graph of the given model (U,V,F). If there exists W be any non-
descendant of A, then downstream predictor ̂Y (W) will be counterfactually fair.

We extend Definition 2 to the fair representation learning and present the
following theorem.

Theorem 1. Given the causal graph G, Za is the representation of sensitive
attributes A, Z

′
x is the structured representation of the other observed attributes

X with respect to the conceptual level causal graph Gc. We have ̂Y (Z
′
x) satisfy

counterfactual fairness.

Proof. Given the causal graph G as shown in Fig. 2, there is not a parent node
of A in X, and there is not a child node of Y in X. X contains four subsets: XA

Y

is the subset of other observed attributes that are descendants of A and parents
of Y ; XN

Y is the subset of other observed attributes that are only parents of Y ;
XN

N is the subset of other observed attributes that are no relationships with A
and Y ; XA

N is the subset of other observed attributes that are only descendants
of A. After perfect representation learning, we obtain Za and Z

′
x.

We proof that Z
′
x is not the descendant of A with the following two subsets.

For the first subsets {XA
Y ,XN

Y ,XA
N}, there are seven paths between A and Z

′
x,

including A → XA
Y ← Z

′
x, A → XA

Y → Y ← Z
′
x, A → XA

Y → Y ← XN
Y ← Z

′
x,

A → Y ← XA
Y ← Z

′
x, A → Y ← Z

′
x, A → Y ← XN

Y ← Z
′
x and A → XA

N ← Y .
These seven paths are blocked by ∅ (i.e., A and Z

′
x are d-separated by ∅), since

each path contains a collider either XA
Y or Y or XA

N. For second subset XN
N,

there is no path connecting XN
N and Y . Hence, Z

′
x is not the descendant of A.

Therefore, ̂Y (Z
′
x) is counterfactually fair based on Definition 2. ��
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Fig. 2. G is the causal graph that rep-
resents the causal relationship between
A, X = {XA

Y ,XN
Y ,XA

N,XN
N} and Y .

The dotted line represents the predic-
tion process that uses Z

′
x.

We use Fig. 2 to show whether the
following predictors satisfy counterfactual
fairness.

− ̂Y (A,X): This model is unfair since
it uses sensitive attributes to make predic-
tion.

− ̂Y (X): This model satisfies fairness
through awareness [8] but fails to achieve
counterfactual fairness. Since it uses XA

Y

and XA
N which are the descendants of A.

− ̂Y (Za,Z
′
x): This model is unfair

because it uses sensitive attributes for pre-
diction. The reason is that Za is the representation of A, which should be con-
sider as sensitive attributes either.

− ̂Y (XN
Y ,XN

N): This model satisfies counterfactual fairness since both XN
Y

and XN
N are non-descendants of A. However, this predictor losses a lot of useful

information that embeds in other observed attributes.
− ̂Y (Z

′
x): This model is counterfactually fair based on Theorem 1 and

achieves higher accuracy than ̂Y (XN
Y ,XN

N) as shown in our experiments.

3.2 CF-VAE

We first discuss the causal constraints and then explain the loss function of
CF-VAE in detail. The architecture of CF-VAE is shown in Fig. 3.

Learning Representations with Causal Constraints. We aim to retain
causal relationships between “concepts” through a more easily accessible con-
ceptual level causal graph Gc and embed these relationships in representations.

To formalise causal relationships, we consider n “concepts” in the dataset,
which means Z

′
x should have the same dimension as “concepts”. The “concepts”

in observations are causally structured by Gc with an adjacency matrix C. For
simplicity, in this paper, the causal constraints are exactly implemented by a
linear structural equation model: Z

′
x = (I − CT )−1Zx, where I is the identity

matrix, Zx is obtained from the encoder, Z
′
x is constructed from Zx and C. C

is obtained from Gc with respect to domain knowledge. The parameters in C
indicate that there are corresponding edges, and the values of the parameters
indicate the weight of the causal relationships. It is worth noting that if the
parameter value is zero, it means that such an edge does not exist, i.e., no causal
relationship between these two “concepts”.

As mentioned above, Zx is obtained from the encoder, we cannot guarantee
that each attribute inside is independent. To ensure the independence of each
attribute in Zx, we employ the total correction regularisation (TCR) in our loss
function. TCR also encourages the correctness of structured Z

′
x with respect to

domain knowledge since it guarantees that there are no relationships between
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Fig. 3. The architecture of CF-VAE.

each attribute in Zx before adding causal constraints. The TCR for our pro-
posed CF-VAE is defined as, LTCR = γDKL[q(Zx)||∏DZx

i=1 q(Zxi
)], where γ is

the weight value, DZx is dimension of Zx.

Learning Strategy. We first explain the Evidence lower bound (ELBO) with
causal constraints. Then, we add orthogonality promoting regularisation (OPR)
to obtain the loss function of CF-VAE. Given the training samples, the param-
eters can be optimised by maximising the following ELBO:

M = Eq(Za|A)[log p(A|Za)] + Eq(Z′
x|X)[log p(X|Z′

x)]

− DKL[q(Za|A)||p(Za)] − DKL[q(Z
′
x|X)||p(Z

′
x)],

where p(Z
′
x) = (I − CT )−1p(Zx); p(X|Z′

x) =
∏DX

i=1 p(Xi|Z′
x);

q(Z
′
x|X) =

∏
D

Z
′
x

i=1 N (μ = μ̂Z′
xi

, σ2 = σ̂2
Z′

xi

).

Then, we introduce orthogonality to encourage disentanglement between Za

and Z
′
x. We employ orthogonality promoting regularisation based on the pairwise

cosine similarity among latent representations: if the cosine similarity is close to
zero, then the latent representations are closer to being orthogonal and indepen-
dent [29]. The orthogonality promoting regularisation (OPR) for our proposed

CF-VAE is defined as, LOPR = 1
B

∑B
i=1

Zai
TZ

′
xi

‖Zai
‖2 ‖Z′

xi
‖2

, where B denotes the batch

size for neural network, ‖·‖2 is the l2 norm.
In conclusion, the loss function of our proposed CF-VAE is defined as:

LCF-VAE = −M + LTCR + LOPR.

4 Experiments

In this section, we conduct extensive experiments to evaluate CF-VAE on real-
world datasets. Before showing the detailed results, we first present the details
of selected methods and the evaluation metrics. The code is available at https://
github.com/IRON13/CF-VAE.

https://github.com/IRON13/CF-VAE
https://github.com/IRON13/CF-VAE
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4.1 Framework Comparison

The proposed CF-VAE is considered as a pre-processing technique to address
fairness issues. Hence, we compare CF-VAE with traditional and VAE-based
pre-processing methods. For traditional methods, we select baselines including
ReWeighting (RW) [13], Disparate Impart Remover (DIR) [9] and Optimized
Preprocessing (OP) [2]. For VAE-based methods, we compare with VFAE [20]
and FFVAE [6]. We also obtain the Full model for comparison, which uses all
attributes in the dataset to make predictions.

We select several well-known predictive models to simulate the downstream
prediction process. Linear Regression (LRR), Stochastic Gradient Descent
Regression (SGDR) and Multi-layer Perceptron Regression (MLPR) are used for
regression tasks; Logistic Regression (LRC), Stochastic Gradient Descent Classi-
fication (SGDC) and Multi-layer Perceptron Classification (MLPC) are used for
classification tasks. For each predictive model, we run 10 times and record the
mean and variance of the results for evaluation metrics.

4.2 Evaluation Metrics

Fairness. There are no metrics to quantify counterfactual fairness since we can
only obtain real-world data. Thus, we propose the situation test to measure
fairness for different predictive models. In our experiment, we define unfairness
score (UFS) to measure the result of the situation test. Specifically, the form
of score differs for different predictive models. For regression tasks, we define

UFSR =

√
1
N

∑N
i=1

(
ŶA←a(Z

′
xi ) − ŶA←ā(Z

′
xi )

)2

; For classification tasks, we define

UFSC = 1
N

∑N
i=1 xor

(
ŶA←a(Z

′
xi

), ŶA←ā(Z
′
xi

)
)

(N is the number of samples for
evaluation). The lower UFS value means that the predictive models achieve
higher fairness performance.

Accuracy. We evaluate the performance on prediction with the following met-
rics. For regression tasks, we use Root Mean Square Error (RMSE) to compare
the error between prediction results and target attributes’ values. For classifica-
tion tasks, we use accuracy to evaluate various predictive models.

4.3 Law School

The law school dataset comes from a survey [28] of admissions information from
163 law schools in the United States. It contains information of 21,790 law stu-
dents, including their entrance exam scores (LSAT), their grade point average
(GPA) collected prior to law school, and their first-year average grade (FYA).
The school expects to predict if the applicants will have a high FYA. Gender and
race are sensitive attributes in this dataset, and the school also wants to ensure
that predictions are not affected by sensitive attributes. However, LSAT, GPA
and FYA scores may be biased due to socio-environmental factors. We use the
same Gc as shown in work [17] to model latent “concepts” of GPA and LSAT .
The process of CF-VAE for the Law school dataset is shown in Fig. 4a.
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Fig. 4. (a) The process of CF-VAE for Law school dataset. (b) The process of CF-VAE
for Adult dataset.

Table 1. The results for Law School dataset. The best fairness aware RMSE and the
best UFSR are shown in bold.

Model Accuracy (RMSE) ↓ Fairness (UFSR) ↓
LRR SGDR MLPR LRR SGDR MLPR

Full 0.865(0.007) 0.867(0.007) 0.865(0.007) 0.660(0.019) 0.762(0.019) 0.760(0.045)

RW 0.955(0.013) 0.956(0.012) 0.953(0.012) 0.067(0.002) 0.067(0.001) 0.079(0.003)

DIR 0.943(0.009) 0.944(0.009) 0.941(0.010) 0.060(0.001) 0.060(0.001) 0.070(0.002)

OP 0.959(0.011) 0.960(0.011) 0.956(0.010) 0.047(0.001) 0.046(0.001) 0.055(0.003)

VFAE 0.932(0.007) 0.933(0.007) 0.934(0.007) 0.035(0.010) 0.074(0.017) 0.096(0.010)

FFVAE 0.933(0.005) 0.934(0.004) 0.935(0.005) 0.032(0.007) 0.060(0.022) 0.097(0.008)

CF-VAE 0.931(0.006) 0.932(0.006) 0.932(0.006) 0.013(0.006) 0.025(0.011) 0.044(0.006)

Results. As shown in Table 1, since the Full model uses sensitive attributes
to make predictions, inverting sensitive attributes has the highest impact on
the individual’s prediction results, which means that the model is unfair. RW,
DIR and OP achieves fair predictions by modifying the dataset compared to
the Full model. Both VFAE and FFVAE disentangle the sensitive attributes
with latent representations, so the influence of inverting the sensitive attributes
on the prediction results is small. Our method achieves the lowest UFSR, 0.013,
0.025, and 0.044 for LRR, SGDR, and MLPR respectively, which means CF-VAE
disentangle Z

′
x and Za more precisely.

For accuracy results, the Full model uses sensitive information to more accu-
rately predict FYA and thus achieves the highest accuracy. The proposed CF-
VAE achieves the best fairness aware accuracy in all predictive models than
other methods.

4.4 Adult

The Adult dataset comes from the UCI repository [7] contains 14 attributes
including race, age, education information, marital information as well as capi-
tal gain and loss for 48,842 individuals. We use the same Gc as shown in previ-
ous research [4,24] to model the latent “concepts”. The adjacency matrix C is

defined as: C =

∣∣∣∣∣∣
0 λ12 λ13

0 0 λ23

0 0 0

∣∣∣∣∣∣. Then, we construct Z
′
x from Zx and C as follows:
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Table 2. The results for Adult dataset. The best fairness aware accuracy and the best
UFSC are shown in bold.

Model Accuracy ↑ Fairness (UFSC) ↓
LRC SGDC MLPC LRC SGDC MLPC

Full 0.802(0.002) 0.803(0.004) 0.831(0.004) 0.068(0.003) 0.060(0.018) 0.034(0.009)

RW 0.797(0.001) 0.792(0.002) 0.819(0.001) 0.038(0.001) 0.029(0.002) 0.052(0.001)

DIR 0.800(0.001) 0.793(0.003) 0.817(0.001) 0.035(0.001) 0.027(0.002) 0.046(0.001)

OP 0.780(0.002) 0.779(0.003) 0.783(0.002) 0.032(0.003) 0.030(0.004) 0.033(0.005)

VFAE 0.785(0.001) 0.781(0.003) 0.819(0.004) 0.062(0.002) 0.041(0.010) 0.025(0.003)

FFVAE 0.785(0.003) 0.782(0.001) 0.814(0.005) 0.062(0.001) 0.044(0.010) 0.032(0.010)

CF-VAE 0.801(0.002) 0.794(0.004) 0.820(0.002) 0.031(0.002) 0.020(0.006) 0.024(0.004)

Z
′
x1 = Zx1 ; Z

′
x2 = λ12Zx1 + Zx2 ; Z

′
x3 = λ13Zx1 + λ23Zx2 + Zx3 . We set parameter

{λ12 = 1, λ13 = 1, λ23 = 1} to denote that edges within latent representations,
i.e., Z

′
x1 → Z

′
x2 , Z

′
x1 → Z

′
x3 , Z

′
x2 → Z

′
x3 . The process of CF-VAE is shown in

Fig. 4b.

Results. The fairness results are shown in Table 2, the Full model achieves the
worst UFSC, since it use A to predict income. Both baseline fairness models
and other VAE-based methods improve fairness to a certain extent. The pro-
posed CF-VAE achieves the best UFSC, only 3.1%, 2.0% and 2.4% of individu-
als’ results are affected by sensitive attributes’ values inversions in LRC, SGDC

and MLPC, respectively. Our method achieves better fairness performance than
other methods, since it remains causal relationships in latent representations
with respect to Gc and disentangles structured representations with sensitive
attributes.

In order to achieve fairness, VFAE and FFVAE lose about 2% of their accu-
racy performance. RW, DIR and OP modify the dataset resulting in a loss of
predictive performance. The proposed CF-VAE not only guarantees the fairness
performance but also retains the causal relationships to improve accuracy. CF-
VAE loses less information than other VAE-base methods and achieves the best
fairness aware accuracy performance in all predictive models, i.e., 80.1%, 79.4%
and 82.0% in LRC, SGDC and MLPC, respectively.

4.5 Ablation Study

We follow the same procedure in [3] to generate synthetic datasets and conduct
an ablation study to validate the contribution of each component in our method
as shown in Table 3.

The Full model (Model i) uses all the observed attributes to train the pre-
dictors. The predictors achieve the best accuracy but the worst fairness perfor-
mance. VFAE (Model ii) is the basic VAE-based unsupervised fair representa-
tion learning method. We set it to be the baseline. Model iii is CF-VAE without
adding causal constraints, which achieves similar results as VFAE since both
methods remove sensitive information from the learnt representations.
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Table 3. The results of ablation study. The best fairness aware RMSE and the best
UFSR are shown in bold, and the runner-up results are underlined.

Model Accuracy (RMSE) ↓ Fairness (UFSR) ↓
LRR SGDR MLPR LRR SGDR MLPR

i 0.078(0.001) 0.081(0.001) 0.081(0.001) 0.102(0.001) 0.098(0.001) 0.106(0.002)

ii 0.126(0.002) 0.126(0.002) 0.145(0.002) 0.006(0.001) 0.010(0.002) 0.104(0.005)

iii 0.125(0.001) 0.125(0.001) 0.145(0.001) 0.007(0.001) 0.011(0.003) 0.105(0.003)

iv 0.109(0.001) 0.111(0.001) 0.122(0.002) 0.003(0.001) 0.004(0.002) 0.071(0.002)

v 0.109(0.001) 0.110(0.001) 0.121(0.001) 0.002(0.001) 0.005(0.002) 0.070(0.002)

Then, we employ causal constraints and add TCR in the loss function
as Model iv, which retains causal relationships in latent representations and
improves both accuracy and fairness performance than previous models. Model
v (a.k.a. CF-VAE) is to encourage Z

′
x and Za are disentangled by adding OPR.

As shown in Table 3, CF-VAE achieves the best accuracy performance and UFSR

among most predictive.

5 Related Works

The machine learning literature has increasingly focused on exploring how algo-
rithms can protect marginalised populations from unfair treatment. An impor-
tant research area is how to quantify fairness, which can be divided into two
categories, the statistical framework and the causal framework.

In the statistical framework, Demographic parity was defined by [31], which
is used to measure group-level fairness. Other similar metrics include equalised
odds [11], predictive rate parity [30]. Dwork et al. [8] proposed a measurement to
quantify individual-level fairness, that is, similar individuals should have similar
treatments, and they use distance functions to measure how similar between
individuals. In the causal framework, the (conditional) average causal effect is
used to quantify fairness between groups [19]; Natural direct and natural indirect
effects are used to quantify specific fairness [24,33]; When unfair causal paths
are identified by domain knowledge, Chiappa [4] used the path-specific causal
effects to quantify fairness on approved paths. For more related works, please
refer to the literature review [23,32].

Our work is related to learning fair representations, which aims to encode
data information into a lower space while removing sensitive information.
VAE [15] and β-VAE [12] have inspired several studies in fair representation
learning. Louizos et al. [20] first introduced VAE for learning fair represen-
tation to disentangle the sensitive information and non-sensitive information,
they proposed a semi-supervised method to encourage disentanglement by using
“Maximum Mean Discrepancy” (MMD). However, the organisations that col-
lect the data cannot predict the downstream uses of the data and the models
that might be used [10,31]. Due to this, many following up works [6,20] focus
on unsupervised learning fair representation. But these works only focus on
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correlation-based constraints to ensure fairness. Our approach combines coun-
terfactual fairness and unsupervised fair representation learning to provide the
proper representations. Furthermore, we innovatively embed domain knowledge
into representations by adding causal constraints with respect to domain knowl-
edge.

6 Conclusion

In this paper, we investigate unsupervised counterfactually fair representation
learning and propose a novel method named CF-VAE which considers causal
relationships with respect to domain knowledge. We theoretically demonstrate
that the structured representations obtained by CF-VAE enable predictive mod-
els to achieve counterfactual fairness. Experimental results on real-world datasets
show that CF-VAE achieves better accuracy and fairness performance on down-
stream predictive models than the benchmark fairness methods. Ablation study
on synthetic datasets shows that causal constraints with total correction reg-
ularisation achieve better accuracy performance and orthogonality promoting
regularisation encourages disentanglement with sensitive attributes.
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