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Abstract
Large Language Models (LLMs) have shown impressive capabilities

in natural language processing but still struggle to perform well on

knowledge-intensive tasks that require deep reasoning and the inte-

gration of external knowledge. Although methods such as Retrieval-

Augmented Generation (RAG) and Chain-of-Thought (CoT) have

been proposed to enhance LLMs with external knowledge, they still

suffer from internal bias in LLMs, which often leads to incorrect

answers. In this paper, we propose a novel causal prompting frame-

work, Conditional Front-Door Prompting (CFD-Prompting), which

enables the unbiased estimation of the causal effect between the

query and the answer, conditional on external knowledge, while

mitigating internal bias. By constructing counterfactual external

knowledge, our framework simulates how the query behaves under

varying contexts, addressing the challenge that the query is fixed

and is not amenable to direct causal intervention. Compared to

the standard front-door adjustment, the conditional variant oper-

ates under weaker assumptions, enhancing both robustness and

generalisability of the reasoning process. Extensive experiments

across multiple LLMs and benchmark datasets demonstrate that

CFD-Prompting significantly outperforms existing baselines in both

accuracy and robustness. The source code and case study are avail-

able at: https://github.com/zbb79/CFD-Prompting.

CCS Concepts
• Information systems→ Question answering; • Computing
methodologies→ Causal reasoning and diagnostics.
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1 Introduction
In recent years, Large Language Models (LLMs) have achieved re-

markable progress in natural language processing. By pre-training

on massive text corpora, they have demonstrated impressive ca-

pabilities in language understanding and generation. Techniques

such as in-context learning [4] and Chain-of-Thought (CoT) [40]

have enabled LLMs to make significant advancements in tasks such

as question answering and behaviour simulation [23]. However,

LLMs still face critical challenges in knowledge-intensive tasks,

as accurate answers often require specific information that falls

outside the distribution of their internal knowledge [47].

To efficiently access external knowledge, relying solely on fine-

tuning incurs significant computational costs and is further con-

strained by limited timeliness [48]. A promising alternative is in-

corporating external knowledge directly into prompts [50], for

example, through Retrieval-Augmented Generation (RAG) [19] or

knowledge graphs [33], which enable LLMs to access more com-

prehensive and up-to-date information. However, simply injecting

external knowledge into prompts does not guarantee that LLMs can

identify and utilise relevant information [31]. Recent studies further

find that internal bias in LLMs can lead to spurious correlations

with the query, thereby preventing the models from effectively

leveraging external information to generate accurate answers [24].
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Figure 1: An example illustrating internal bias in LLMs. CoT-
SC [38] selects the most frequent answer among sampled
CoTs, which results in incorrect answer. In contrast, CFD-
Prompting selects the answer with the highest causal effect
and yields the correct result. This example is taken from a
response by GPT-3.5 Turbo on HotpotQA.

To address this challenge, CoT self-consistency (CoT-SC) [38]

improves reasoning by sampling multiple CoTs and selecting the

most frequent answer. While effective against random errors, it fails

to correct spurious correlations caused by internal bias in LLMs. As

a stronger alternative, causality-based prompting methods estimate

the causal effect of either the query or the CoT on the answer to

select more reliable reasoning paths [44, 49]. As shown in Figure 1,

we present an illustrative example comparing majority voting with

our framework. The latter produces more accurate answers by

ranking the causal effect of the query on the answer.

While priorwork has explored both general reasoning and causal-

ity-based methods, their differences have not been formally charac-

terised. We introduce a set of Structural Causal Models (SCMs) to

clarify the assumptions and limitations of eachmethod. As shown in

Figure 2a, general methods perform direct reasoning without CoTs,

where the latent confounder 𝑈 induces spurious correlations be-

tween the query and the answer, often leading to incorrect answers.

Figure 2b illustrates CoT and CoT-SC, which enhance performance

through explicit reasoning steps but still suffer from bias due to𝑈 .

Causal prompting (CP) mitigates this bias via the standard front-

door adjustment [49], but it relies on strong assumptions, namely

the absence of any observed confounders that interact with the

CoT. To relax these constraints, Wu et al. [44] propose DeCoT for

knowledge-intensive tasks (as shown in Figure 2c), which leverages

(a) (b) (c)

Figure 2: Three SCMs representing reasoning in LLMs: (a) gen-
eral reasoning without CoTs; (b) CoT and CoT-SC incorporate
explicit reasoning, and CP applies the standard front-door
adjustment; (c) DeCoT and the proposed CFD-Prompting,
which are specifically for knowledge-intensive tasks. Here,
𝑄 is the query, 𝐴 is the answer, 𝐶 is the CoT, 𝑈 is the latent
confounder, and 𝐸 is the observed external knowledge.

external knowledge as an instrumental variable to estimate the av-

erage causal effect of the CoT on the answer. However, this method

provides only a coarse estimate and may overlook fine-grained

causal effects between the query and the answer. Thus, there is a

clear need for a causal prompting framework that can provide an

unbiased estimate of the causal effect of the query on the answer

to improve performance on knowledge-intensive tasks.

In this work, we propose the Conditional Front-Door Prompting

(CFD-Prompting) framework, which leverages conditional front-

door adjustment to mitigate internal bias and generate more reliable

answers for knowledge-intensive tasks. As a relaxed variant of the

standard front-door criterion, it allows interactions between CoTs

and external knowledge, making it better suited to such tasks. To

implement this, we generate counterfactual external knowledge to

simulate causal interventions on the query. CFD-Prompting adopts

an encoder-based architecture that does not require access to model

logits, enabling compatibility with closed-source LLMs. The contri-

butions of this paper are summarised as follows:

• We present a causal analysis of LLM reasoning using structural

causal models, offering a theoretical foundation for de-biasing

answers in knowledge-intensive tasks.

• We propose CFD-Prompting, a general and logit-free causal

prompting framework that supports both open-source and

closed-source LLMs, and relaxes the assumptions of standard

front-door methods by allowing interactions between CoTs

and external knowledge.

• We conduct extensive experiments across multiple LLMs and

benchmark datasets, demonstrating that CFD-Prompting con-

sistently outperforms state-of-the-art prompting baselines in

both accuracy and robustness.

2 Preliminaries
We use capital letters to denote variables and lowercase letters

to denote their values. Due to space limitations, we refer readers

to [25] for the fundamental definitions of causality, including di-

rected acyclic graphs (DAGs), the Markov condition, faithfulness,

𝑑-separation, and 𝑑-connection.
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2.1 Structural Causal Model
The structural causal model (SCM) [26] formalises causal relation-

ships between variables using a directed acyclic graph (DAG) and

a set of structural equations. In a DAG G = (V, E),V denotes the

set of nodes (variables), and E denotes the set of directed edges,

where an edgeV𝑖 →V𝑗 indicates thatV𝑖 is a direct cause ofV𝑗 .

A path 𝜋 between nodes V1 and V𝑛 is a sequence of distinct

nodes ⟨V1,V2, . . . ,V𝑛⟩ such that each consecutive pair (V𝑖 ,V𝑖+1)
is adjacent in the graph. A node V is said to lie on the path 𝜋 if

it appears in the sequence. A path 𝜋 is called causal if all edges
along it follow the same direction, i.e., V1 → V2 → · · · → V𝑛 ;
otherwise, it is referred to as a non-causal path.

As illustrated in Figure 2a, we denote the query as 𝑄 , which in-

cludes both demonstrations and test examples provided to the LLM.

The predicted answer generated by the LLM in response to the

query is denoted as 𝐴. Since LLMs generate answers directly based

on the given 𝑄 , we represent the direct causal effect from query to

answer as 𝑄 → 𝐴. However, during the pre-training phases, LLMs

may internalise spurious correlations between surface-level pat-

terns and output distributions. These correlations, often inherited

from large-scale web corpora or task-specific fine-tuning datasets,

can manifest as implicit biases in downstream reasoning [1, 13].

To model this phenomenon, we introduce an unobservable vari-

able 𝑈 , which captures the internal bias in LLMs. In this case, al-

though 𝑄 → 𝐴 holds as a structural dependency, the true causal

relationship is confounded by 𝑈 , which influences the generation

of a reasonable answer. This is formally captured by the back-door

path 𝑄 ← 𝑈 → 𝐴, indicating that the observed statistical associ-

ation between 𝑄 and 𝐴 is not purely causal. To estimate the true

causal effect of 𝑄 on 𝐴, it is necessary to adjust for this confounder

𝑈 . If the confounder 𝑈 is observable, the causal effect could be

adjusted using the back-door adjustment formula [25] as follows:

𝑃 (𝐴 | do(𝑄)) =
∑︁
𝑢

𝑃 (𝐴 | 𝑄,𝑢)𝑃 (𝑢) . (1)

However, in practice, since𝑈 is latent (i.e., unmeasured), alterna-

tive strategies such as front-door adjustment are required to obtain

an unbiased estimate of the causal effect.

2.2 Front-door Adjustment
One prominent approach to addressing unobserved confounders

is the standard front-door adjustment [25]. Unlike the back-door

criterion, which requires blocking all back-door paths, the standard

front-door criterion isolates the causal pathway through a suitable

mediator, even in the presence of unobserved confounders. In the

following, we outline the standard front-door criterion and describe

how it can be adapted to mitigate internal bias in LLMs.

Definition 1 (Standard Front-Door Criterion [25]). A set
of variables 𝑍SFD is said to satisfy the (standard) front-door criterion
relative to an ordered pair of variables (𝑄,𝐴) in a DAG G if the
following conditions hold: (1) 𝑍SFD intercepts all directed paths from
𝑄 to 𝐴; (2) there is no unblocked back-door path from 𝑄 to 𝑍SFD; (3)
all back-door paths from 𝑍SFD to 𝐴 are blocked by 𝑄 .

Theorem 1 (Standard Front-Door Adjustment [25]). If𝑍SFD
satisfies the standard front-door criterion relative to (𝑄,𝐴), then the
causal effect of 𝑄 on 𝐴 is identifiable and is given by the following

standard front-door adjustment formula:

𝑃 (𝐴|𝑑𝑜 (𝑄)) =
∑︁

𝑧SFD, 𝑞

𝑃 (𝐴 | 𝑞, 𝑧SFD)𝑃 (𝑧SFD | 𝑞)𝑃 (𝑞) . (2)

The derivation of Equation 2 relies on the rules of do-calculus [25],

which allows the systematic transformation of expressions involv-

ing the 𝑑𝑜 (·) operator into observational probabilities under certain
graphical conditions. The rules of do-calculus are as follows:

Theorem 2 (Rules of 𝑑𝑜-Calculus [25]). Let G be the DAG
associated with a structural causal model, and let 𝑃 (·) denote the
probability distribution induced by that model. For any disjoint subsets
of variables 𝑄,𝐴, 𝑍 , and𝑊 , the following rules hold:
• Rule 1 (Insertion/deletion of observations): 𝑃 (𝐴 | 𝑑𝑜 (𝐴), 𝑍,𝑊 ) =
𝑃 (𝐴 | 𝑑𝑜 (𝑄),𝑊 ), if (𝐴 ⊥⊥ 𝑍 | 𝐴,𝑊 ) in G

𝑄
;

• Rule 2 (Action/observation exchange): 𝑃 (𝐴 | 𝑑𝑜 (𝑄), 𝑑𝑜 (𝑍 ),𝑊 ) =
𝑃 (𝐴 | 𝑑𝑜 (𝑄), 𝑍,𝑊 ), if (𝑌 ⊥⊥ 𝑍 | 𝑄,𝑊 ) in G

𝑄𝑍
;

• Rule 3 (Insertion/deletion of actions): 𝑃 (𝐴 | 𝑑𝑜 (𝑄), 𝑑𝑜 (𝑍 ),𝑊 ) =
𝑃 (𝐴 | 𝑑𝑜 (𝑄),𝑊 ), if (𝐴 ⊥⊥ 𝑍 | 𝑄,𝑊 ) in G

𝑄,𝑍 (𝑊 ) ,

where 𝑍 (𝑊 ) is the set of nodes in 𝑍 that are not ancestors of any node
in𝑊 in G

𝑄
.

Here, G
𝑄
denotes the DAGs obtained by removing all incoming

edges into𝑄 , while G𝑄 denotes the graph obtained by removing all

outgoing edges from 𝑄 . This notation generalises to any variable

or set of variables, not limited to 𝑄 .

The standard front-door criterion provides a theoretical founda-

tion for identifying causal effects even in the presence of unobserved

confounders. In the context of LLMs, this insight motivates treating

the CoT as a valid front-door variable for estimating the causal

effect of the query on the answer . As illustrated in Figure 2b, 𝐶

satisfies the conditions of the standard front-door criterion with

respect to the causal effect of 𝑄 on 𝐴. This allows the causal effect

𝑃 (𝐴 | do(𝑄)) to be decomposed into two components: the effect of

𝑄 on 𝐶 , and the effect of 𝐶 on 𝐴 conditional on 𝑄 . Specifically, the

front-door adjustment formula is given by:

𝑃 (𝐴 | 𝑑𝑜 (𝑄)) =
∑︁
𝑐

𝑃 (𝑐 | 𝑄)
∑︁
𝑞

𝑃 (𝐴 | 𝑐, 𝑞)𝑃 (𝑞). (3)

CP is a causality-based prompting framework grounded in the

SCM shown in Figure 2b. It assumes no observed variables interact

with the CoT, simplifying the DAG to satisfy the standard front-

door criterion [49]. However, this assumption limits its applicability

to knowledge-intensive tasks, where external knowledge 𝐸 often

acts as an observed confounder influencing both the query and the

CoT. In such cases, the CoT no longer meets the conditions for a

valid front-door variable.

To address the limitations of standard front-door adjustment in

knowledge-intensive tasks, we adopt the conditional front-door

adjustment, which accounts for observed confounders through

conditioning. This motivates our proposed CFD-Prompting frame-

work, which treats the CoT as a conditional front-door variable and

incorporates external knowledge to enable unbiased reasoning.

3 Method
In this section, we first outline the task and introduce the nota-

tions used throughout the paper. We then present our proposed
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Figure 3: The overall architecture of CFD-Prompting. 𝐶init
denotes the encoded CoT generated by the LLM given the
query𝑄 and external knowledge 𝐸;𝐶 is the encoded CoT after
applying k-means; 𝐶∗ represents the encoded CoT generated
using the counterfactual variant of external knowledge 𝐸∗;
#1 indicates the final answer selected based on the highest
estimated causal effect, i.e., 𝑃 (𝐴 | do(𝑄)).

framework, CFD-Prompting, which decomposes the overall effect

into three components and enables unbiased answer selection via

causal interventions. The overall architecture of CFD-Prompting is

illustrated in Figure 3.

3.1 Task Description
We consider knowledge-intensive tasks inwhich an LLM is prompted

with a query 𝑄 , generates a CoT 𝐶 , and subsequently produces a fi-

nal answer𝐴, as illustrated in Figure 2c. This SCM, inspired by [44],

assumes that both 𝑄 and 𝐶 may be influenced by external knowl-

edge 𝐸, while 𝑈 represents a latent confounder that biases the

estimation of the causal effect of 𝑄 on 𝐴.

To address this issue, we adopt a conditional front-door adjust-

ment strategy to obtain an unbiased estimate of 𝑃 (𝐴 | 𝑑𝑜 (𝑄)). By
recovering the unbiased causal effect, we are able to select the an-

swer with the highest causal effect from the query, which we regard

as the most reliable or correct answer.

3.2 Conditional Front-Door Adjustment
To mitigate the bias introduced by𝑈 , we leverage conditional front-

door adjustment. The formal criterion is defined as follows:

Definition 2 (Conditional Front-Door Criterion [45]). A
set of variables 𝑍CFD is said to satisfy the conditional front-door
criterion relative to an ordered pair of variables (𝑄,𝐴) in a DAG G
such that the following conditions hold: (1)𝑍CFD intercepts all directed
paths from 𝑄 to 𝐴; (2) there exists a set of variables𝑊 , called the
conditioning variables of 𝑍CFD, such that all back-door paths from
𝑄 to 𝑍CFD are blocked by𝑊 ; (3) all back-door paths from 𝑍CFD to 𝐴
are blocked by 𝑄 ∪𝑊 .

As illustrated in Figure 2c, 𝐶 satisfies all conditions of the con-

ditional front-door criterion relative to (𝑄,𝐴), where the external
knowledge 𝐸 serves as the conditioning variable of 𝐶 . Therefore, 𝐶

can be used as a valid conditional front-door adjustment variable

to identify the causal effect of 𝑄 on 𝐴.

We now apply Theorem 2 to derive 𝑃 (𝐴 | do(𝑄)). The derivation
proceeds as follows:

𝑃 (𝐴|𝑑𝑜 (𝑄)) =
∑︁
𝑐

𝑃 (𝑐 |𝑑𝑜 (𝑄))𝑃 (𝐴|𝑐, 𝑑𝑜 (𝑄))

=
∑︁
𝑐

𝑃 (𝑐 |𝑑𝑜 (𝑄))
∑︁
𝑒

𝑃 (𝐴|do(𝑄), 𝑐, 𝑒)𝑃 (𝑒 |do(𝑄), 𝑐)

=
∑︁
𝑐

𝑃 (𝑐 |𝑑𝑜 (𝑄))
∑︁
𝑒

𝑃 (𝐴|do(𝑄), do(𝑐), 𝑒)𝑃 (𝑒 |do(𝑄), 𝑐),

since (𝐴 ⊥⊥𝐶 |𝑄, 𝐸) in G
𝑄𝐶

(Rule 2 in Theorem 2)

=
∑︁
𝑐

𝑃 (𝑐 |𝑑𝑜 (𝑄))
∑︁
𝑒

𝑃 (𝐴|do(𝑐), 𝑒)𝑃 (𝑒 |do(𝑄), 𝑐),

since (𝐴 ⊥⊥𝑄 |𝐶, 𝐸) in G
𝐶𝑄 (𝐸 ) (Rule 3 in Theorem 2)

=
∑︁
𝑐

𝑃 (𝑐 |𝑑𝑜 (𝑄))
∑︁
𝑒, 𝑞

𝑃 (𝐴|do(𝑐), 𝑞, 𝑒)𝑃 (𝑞 |do(𝑐), 𝑒)𝑃 (𝑒 |do(𝑄), 𝑐),

=
∑︁
𝑐

𝑃 (𝑐 |𝑑𝑜 (𝑄))
∑︁
𝑒, 𝑞

𝑃 (𝐴|𝑐, 𝑞, 𝑒)𝑃 (𝑞 |do(𝑐), 𝑒)𝑃 (𝑒 |do(𝑄), 𝑐),

since (𝐴 ⊥⊥𝐶 |𝑄, 𝐸) in G𝐶 (Rule 2 in Theorem 2)

=
∑︁
𝑐

𝑃 (𝑐 |𝑑𝑜 (𝑄))
∑︁
𝑒, 𝑞

𝑃 (𝐴|𝑐, 𝑞, 𝑒)𝑃 (𝑞 |𝑒)𝑃 (𝑒 |do(𝑄), 𝑐),

since (𝑄 ⊥⊥𝐶 |𝐸) in G
𝐶 (𝐸 ) (Rule 3 in Theorem 2)

=
∑︁
𝑐

𝑃 (𝑐 |𝑑𝑜 (𝑄))
∑︁
𝑒, 𝑞

𝑃 (𝐴|𝑐, 𝑞, 𝑒)𝑃 (𝑞 |𝑒) 𝑃 (𝑒, 𝑐 |𝑑𝑜 (𝑄))
𝑃 (𝑐 |do(𝑄)) ,

since the chain rule of conditional probability

=
∑︁
𝑐

𝑃 (𝑐 |𝑑𝑜 (𝑄))
∑︁
𝑒, 𝑞

𝑃 (𝐴|𝑐, 𝑞, 𝑒)𝑃 (𝑞 |𝑒) 𝑃 (𝑐 |𝑄, 𝑒)𝑝 (𝑒)
𝑃 (𝑐 |do(𝑄))

=
∑︁
𝑐, 𝑒

𝑃 (𝑐 |𝑄, 𝑒)
∑︁
𝑞, 𝑒

𝑃 (𝐴|𝑐, 𝑞, 𝑒)𝑃 (𝑞 |𝑒)𝑃 (𝑒)

In our setting,𝑄 denotes the query, which remains fixed through-

out the reasoning process. That is, we do not perform any inter-

vention over 𝑄 , and thus it can be treated as a constant rather than

a random variable. Consequently, the term 𝑃 (𝑞 | 𝑒) and the sum-

mation over 𝑞 can be omitted, simplifying the expression for the

causal effect as follows,

𝑃 (𝐴 | 𝑑𝑜 (𝑄)) =
∑︁
𝑐, 𝑒

𝑃 (𝑐 | 𝑄, 𝑒)︸      ︷︷      ︸
②

𝑃 (𝐴 | 𝑐, 𝑞, 𝑒)︸         ︷︷         ︸
③

𝑃 (𝑒)︸︷︷︸
①

(4)

We begin by introducing the procedure for generating counter-

factual external knowledge, which is a key step in estimating causal

effects via conditional front-door adjustment.We then present Equa-

tion 4, which decomposes the causal effect from 𝑄 to 𝐴 into three

components, each of which can be estimated independently to re-

cover the overall causal effect. Components①,②, and③ are detailed

in Sections 3.3, 3.4, and 3.5, respectively.

3.3 Constructing Counterfactual External
Knowledge

In many LLM-based reasoning tasks, the query 𝑄 is fixed and not

subject to direct causal intervention. This poses a fundamental

challenge for causal effect estimation. Traditional causal inference
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assumes the ability to intervene on the treatment, i.e.,𝑄 in our case.

However, in practice, we typically only observe outputs conditioned

on a single realisation of 𝑄 . As a result of this limitation, directly

estimating the causal effect 𝑃 (𝐴 | 𝑑𝑜 (𝑄)) becomes infeasible under

standard assumptions.

To overcome this limitation, we introduce counterfactual exter-

nal knowledge as contextual background for reasoning. While 𝑄

remains fixed, modifying 𝐸 allows us to simulate alternative reason-

ing environments. These changes induce meaningful shifts in the

distribution of𝐶 , effectively mimicking how𝑄 would behave under

different contexts. In this way, we simulate causal intervention

without directly altering 𝑄 .

To simulate the causal intervention, we construct counterfac-

tual versions of the external knowledge that alter the context in

which reasoning occurs. Concretely, given 𝐸, we first prompt the

LLM to identify the top 𝑇 entities most relevant to 𝑄 , denoted as

𝑉 = [𝑣1, 𝑣2, . . . , 𝑣𝑇 ]. These entities are ranked by their relevance

scores and assigned corresponding weights𝑊 = [𝑤1,𝑤2, . . . ,𝑤𝑇 ],
where 𝑤1 ≥ 𝑤2 ≥ · · · ≥ 𝑤𝑇 . Then, for each 𝑣 ∈ 𝑉 , we generate a
counterfactual alternative 𝑣∗, forming the set 𝑉 ∗ = [𝑣∗

1
, 𝑣∗

2
, . . . , 𝑣∗

𝑇
].

The weights of the counterfactual entities are preserved, i.e., 𝑤𝑡

remains unchanged, allowing a controlled substitution in the rea-

soning context. Here, the subscript 𝑡 ∈ {1, 2, . . . ,𝑇 } indexes the
entities based on their ranked relevance to 𝑄 .

Next, from the counterfactual entity list 𝑉 ∗, we enumerate all

possible subsets of size 𝑇 − 1, resulting in

( 𝑇
𝑇−1

)
= 𝑇 combinations.

For each combination, we replace the corresponding entities in the

original external knowledge 𝑒 to construct a counterfactual variant

𝑒∗, as follows:
𝐸∗ = [𝑒∗

1
, 𝑒∗
2
, . . . , 𝑒∗𝑇 ], (5)

where 𝑡 ∈ {1, 2, . . . ,𝑇 } indexes the combinations, each formed by re-

moving exactly one entity from the original set of 𝑇 counterfactual

entities.

We assign a probability to each 𝑒∗𝑡 based on the product of the

weights of its constituent entities. Let𝑊𝑡 = {𝑤𝑡,1, . . . ,𝑤𝑡,𝑇−1} be
the weights of the entities in the 𝑡-th combination. Here, each

𝑊𝑡 contains the weights of the 𝑇 − 1 entities, since each 𝑒∗𝑡 is

constructed by removing exactly one entity from the original set of

𝑇 counterfactual entities. Then, the probability of 𝑒∗𝑡 is defined as

follows:

𝑃 (𝑒∗𝑡 ) =
∏𝑇−1

𝑖=1 𝑤𝑡,𝑖∑𝑇
𝑡=1 (

∏𝑇−1
𝑖=1 𝑤𝑡,𝑖 )

. (6)

3.4 The calculation of 𝑃 (𝑐 | 𝑄, 𝑒)
We prompt the LLM to generate𝑀 CoTs based on the query 𝑄 and

external knowledge 𝐸. These CoTs are then encoded into vector rep-

resentations using a dedicated encoder. We then apply the K-means

clustering algorithm [16] to partition the𝑀 CoTs into 𝑁 clusters.

The CoT closest to each cluster centroid is selected, resulting in 𝑁

representative CoTs for downstream causal interventions.

Since the encoder operates in a representation space different

from that of the LLM [49], the computed distances between CoTs

may not accurately reflect the LLM’s reasoning preferences. To

mitigate this issue, we adopt contrastive learning [5, 21] to fine-

tune the encoder so that its embedding space is aligned with the

LLM representation space.

Specifically, we construct a training dataset D, where each in-

stance consists of 𝑄 and its associated CoT 𝑐 . We treat each CoT

𝑐 ∈ D as an anchor, and denote its representation as 𝑧𝑎 . Then,

we prompt the LLM to generate a semantically similar CoT 𝑐+,
whose representation is used as the positive sample 𝑧+. Meanwhile,

CoTs 𝑐− from other instances in the same batch serve as negative

samples, with their representations denoted as 𝑧− . Following prior

works [5, 49], we adopt the InfoNCE loss to fine-tune the encoder:

L = − log exp(𝑧⊤𝑎 𝑧+/𝜏)
exp(𝑧⊤𝑎 𝑧+/𝜏) +

∑
𝑧− exp(𝑧⊤𝑎 𝑧−/𝜏)

, (7)

where 𝜏 is a temperature parameter that controls the scaling of

the similarities, and

∑
𝑧− denotes the summation over all negative

sample embeddings in the batch.

For each counterfactual external knowledge 𝑒∗𝑡 ∈ 𝐸∗, we in-

put it together with 𝑄 into the LLM and repeat this process 𝑃

times to generate CoTs. These generated CoTs form the set 𝐶∗𝑡 =

[𝑐∗
𝑡,1
, 𝑐∗
𝑡,1
, . . . , 𝑐∗𝑡,𝑝 ]. We then encode each CoT in this set using the

encoder, resulting in the representations 𝐶∗𝑡 = [𝑐∗
𝑡,1
, 𝑐∗
𝑡,2
, . . . , 𝑐∗𝑡,𝑝 ].

Similarly, the CoT 𝐶 is encoded into the representations 𝐶 .

Next, we use cosine similarity to compute the similarity between

𝑐𝑛 , the representation of the 𝑛-th CoT selected from the 𝑁 clusters,

and each representation in 𝐶∗𝑡 , as follows:

𝑑𝑛,𝑡,𝑝 = cosine(𝑐𝑛, 𝑐∗𝑡,𝑝 ), (8)

where 𝑑 𝑗 ∈ [−1, 1]. A value close to 1 indicates high semantic

similarity, while a value near 0 suggests dissimilarity.

To assess the impact of the counterfactual external knowledge

on the stability of reasoning, we define a similarity threshold 𝑠 . For

each generated CoT 𝑐∗𝑡,𝑝 from set 𝐶∗𝑡 , we calculate the similarity

score 𝑑𝑛,𝑡,𝑝 . If 𝑑𝑛,𝑡,𝑝 ≥ 𝑠 , we consider 𝑐𝑡,𝑝 to be logically consistent

with the original CoT 𝑐𝑛 , assigning it a score of 1. Conversely, if

𝑑𝑛,𝑡,𝑝 < 𝑠 , we deem it to differ significantly from 𝑐𝑛 , and assign it a

score of 0. Formally, we define the indicator function as:

Isim (𝑐𝑛, 𝑐∗𝑡,𝑝 ) =
{
1 if 𝑑𝑛,𝑡,𝑝 ≥ 𝑠,

0 if 𝑑𝑛,𝑡,𝑝 < 𝑠 .
(9)

We then compute the conditional probability 𝑃 (𝑐 | 𝑄, 𝑒) by
averaging the indicator scores over the 𝑃 generated CoTs:

𝑃 (𝑐 | 𝑄, 𝑒) ≈ 1

𝑃

𝑃∑︁
𝑝=1

Isim (𝑐𝑛, 𝑐∗𝑡,𝑝 ) . (10)

This probability reflects the proportion of generated CoTs that

remain semantically consistent with the original CoT under the

given 𝐸 and 𝑄 .

3.5 The calculation of 𝑃 (𝐴 | 𝑐, 𝑞, 𝑒)
Through Section 3.3 and 3.4, we identify CoTs generated using

counterfactual external knowledge that are semantically consistent

with the original CoTs, forming the subset:

𝐶∗
𝑡,sub

= [𝑐∗𝑡,1, 𝑐
∗
𝑡,1, . . . , 𝑐

∗
𝑡,𝑟 ] (11)

where 𝐶∗
𝑡,sub

⊆ 𝐶∗𝑡 and 𝑟 ∈ {1, 2, . . . , 𝑅}. 𝑅 is the number of CoTs

that satisfy 𝑑𝑛,𝑡,𝑝 > 𝑠 , indicating semantic consistency with 𝑐𝑛 .
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For each 𝑐∗𝑡,𝑟 ∈ 𝐶∗𝑡,sub, we compute the answer using a reasoning

function:

𝑎𝑡,𝑟 = 𝑓 (𝑐∗𝑡,𝑟 ), (12)

where 𝑓 (·) denotes the LLM-based reasoning process that produces

an answer given a CoT representation.

We compare𝑎𝑡,𝑟 against the reference answer𝑎𝑛 (i.e,𝑎𝑛 = 𝑓 (𝑐𝑛)).
If 𝑎𝑡,𝑟 = 𝑎𝑛 , it suggests that 𝑐

∗
𝑡,𝑟 is insensitive to external knowledge

changes, and we assign a score of 0. Otherwise, we assign a score

of 1, indicating that 𝑐∗𝑡,𝑟 reflects adaptive reasoning. We formalise

this using an indicator function:

Iins (𝑐∗𝑡,𝑟 ) =
{
0 if 𝑎𝑡,𝑟 = 𝑎𝑛,

1 if 𝑎𝑡,𝑟 ≠ 𝑎𝑛 .
(13)

The probability 𝑃 (𝐴 | 𝑐, 𝑞, 𝑒) is defined as:

𝑃 (𝐴 | 𝑐, 𝑞, 𝑒) ≈ 1

𝑅

𝑅∑︁
𝑗=1

Iins (𝑐∗𝑡,𝑟 ), (14)

This equation captures the sensitivity of the CoT 𝑐𝑖 to the ex-

ternal knowledge variations. A low value of 𝑃 (𝐴 | 𝑐, 𝑞, 𝑒) indicates
consistent answers across contexts, while a high value suggests that

the reasoning outcome is highly responsive to external knowledge.

3.6 The calculation of 𝑃 (𝐴 | 𝑑𝑜 (𝑄))
Following the previous derivation, Equation 4 can be simplified to

the following form:

𝑃 (𝐴 | 𝑑𝑜 (𝑄)) =
∑︁
𝑐, 𝑒

𝑃 (𝑐 | 𝑄, 𝑒)𝑃 (𝐴 | 𝑐, 𝑞, 𝑒)𝑃 (𝑒)

≈
𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1


1

𝑃

𝑃∑︁
𝑗=1

Isim (𝑐𝑛, 𝑐∗𝑡,𝑝 ) ·
1

𝑅

𝑅∑︁
𝑗=1

Iins (𝑐∗𝑡,𝑟 ) · 𝑃 (𝑒∗𝑡 )
 (15)

4 Experiments
In this section, we evaluate the effectiveness and robustness of

CFD-Prompting across four knowledge-intensive datasets using

three different backbone LLMs. We first introduce the datasets and

baseline methods used for comparison, followed by implementation

details. We then present the main results, conduct robustness and

hyper-parameter studies to assess stability under noisy conditions,

and perform an ablation study to examine the contribution of key

components in our framework. Due to space constraints, the case

study illustrating the practical application of our framework is

provided via the anonymous link in the abstract.

4.1 Dataset and Evaluation
To better evaluate the performance of our framework in handling

complex knowledge-intensive tasks [27, 52], we follow previous

works [44, 49] and select the SciQ, HotpotQA,WikiHop, andMuSiQue

datasets for evaluation. These four datasets cover diverse knowl-

edge domains [35, 41, 42, 46], include multi-hop reasoning and

feature various question types. They comprehensively assess the

performance of methods in knowledge retrieval, reasoning abil-

ity, and information processing. The detailed information for each

dataset are as follows:

• SciQ [41] is a multiple-choice science QA dataset covering

physics, chemistry, and biology. We evaluate comparison meth-

ods and ours on the test set with provided supporting evidence.

• HotpotQA [46] is a multi-hop QA benchmark with open-ended

and yes/no questions, requiring reasoning across multiple sup-

porting documents. We use the provided documents as external

knowledge in our experiments.

• WikiHop [42] is a multi-choice, multi-hop reasoning dataset.

We treat its queries as questions and prompt models to generate

free-form answers instead of selecting from candidates.

• MuSiQue [35] emphasises multi-step reasoning and composi-

tional question decomposition. We select instances requiring

more than three reasoning hops for evaluation.

We use Exact Match (EM) and F1 score as the evaluation metrics

to assess method performance [46]. Following previous work [22],

we extract the text span immediately following the keyword “an-

swer is” as the final predicted answer.

4.2 Comparison Methods and Backbone Models
We compare our framework with the following methods:

• In-Context Learning (ICL) [4]: Prompt LLMs with a few

demonstration examples consisting of only questions and

their corresponding answers, without any intermediate rea-

soning or explanatory context.

• CoTwithout context (CoTw/o ctx) [40]: Apply CoT prompt-

ing without providing any external context, generating rea-

soning purely based on the query itself.

• CoT [40]: Prompt LLMs with demonstration examples con-

taining detailed reasoning chains, guiding the model step-

by-step through the thought process required to reach an

answer.

• CoT self-consistency (CoT-SC) [38]: An extension of CoT

prompting where LLMs generate multiple reasoning chains

for a given query, and majority voting is used to determine

the final answer.

• Context-aware Decoding (CAD) [32]: Improve LLM gen-

eration by comparing output distributions with and without

external context to enhance reasoning reliability.

• De-biasing CoT (DeCoT) [44]: Mitigate internal knowledge

bias by using external knowledge as an instrumental variable

to estimate the average causal effect of the CoT on the answer,

enabling the selection of logically correct reasoning paths.

• Causal Prompting (CP) [49]: Estimates the causal effect

of the query on the answer using the standard front-door

adjustment, but it is primarily tailored for general reasoning

tasks and does not account for the complexities of knowledge-

intensive settings.

In our experiments, we select three pre-trained LLMs as back-

bone models to ensure diversity and comparability: Llama-2-7b-

chat-hf (LLaMA-2) [34], Meta-Llama-3-8B-Instruct (LLaMA-3) [2],

and GPT-3.5 Turbo [3]. These LLMs differ in terms of parameter

scale, training strategies, and open-source versus closed-source

design, providing a comprehensive foundation for evaluation.
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Table 1: The comparison results of CFD-Prompting and sevenmethods across three backbone LLMs on four knowledge-intensive
tasks. Best results are highlighted in bold.

SciQ HotpotQA WikiHop MuSiQue Average

Model Method EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑

LLaMA-2

ICL 7.81 9.56 8.40 11.95 11.60 15.47 1.33 2.85 7.29 9.96

CoT w/o ctx 14.72 22.63 8.20 14.23 4.40 6.26 0.40 3.07 6.93 11.55

CoT 30.55 45.98 9.50 17.19 16.10 21.22 1.73 4.50 14.47 22.22

CoT-SC 41.63 54.23 17.20 24.46 21.30 26.78 2.13 4.62 20.56 27.52

CAD 31.79 40.11 18.00 29.45 16.40 20.03 1.46 6.62 16.91 24.05

DeCoT 42.26 54.43 20.40 32.16 19.59 25.92 3.32 6.27 21.39 29.70

CP 42.10 54.23 17.90 25.54 22.01 29.03 2.99 8.05 21.25 29.21

Ours 43.60 55.35 22.00 33.73 22.93 31.06 4.52 11.68 23.26 32.95

LLaMA-3

ICL 24.10 41.45 3.20 20.15 6.80 25.96 3.99 6.65 9.52 23.55

CoT w/o ctx 35.29 48.48 15.30 25.23 12.60 17.91 2.39 7.70 16.39 24.83

CoT 50.32 67.52 31.30 47.85 22.40 32.27 12.63 20.15 29.16 41.95

CoT-SC 60.86 77.57 36.30 54.80 26.60 37.12 21.48 31.20 36.31 50.17

CAD 52.60 65.20 30.30 40.58 24.00 32.22 12.63 23.12 29.88 40.28

DeCoT 62.18 79.33 43.30 59.51 24.25 35.17 21.14 28.85 37.72 50.71

CP 61.59 77.30 42.74 58.87 25.20 35.22 22.13 24.18 37.91 48.89

Ours 63.12 79.65 47.80 62.41 27.20 37.55 24.35 34.12 40.62 53.43

GPT-3.5 Turbo

ICL 65.95 81.01 41.20 52.13 21.30 31.43 23.01 33.20 37.87 49.44

CoT w/o ctx 42.19 55.58 30.30 42.89 16.30 23.26 8.91 17.65 24.42 34.84

CoT 66.97 80.32 43.90 60.30 26.72 36.20 26.20 36.40 40.95 53.30

CoT-SC 68.55 82.37 51.00 66.23 28.18 38.22 33.38 44.27 45.28 57.77

CAD 67.08 78.84 45.00 60.85 27.70 37.70 26.86 40.14 41.66 54.38

DeCoT 70.98 84.08 51.30 67.79 31.09 40.14 34.59 47.36 46.99 59.84

CP 70.93 83.76 51.10 66.53 29.56 39.45 33.78 47.82 46.34 59.39

Ours 71.83 85.12 53.40 68.67 32.00 41.17 36.17 48.01 48.35 60.74

4.3 Implementation Details
We deploy the LLM using the vLLM framework [18]. Compared

with traditional Transformer serving frameworks, vLLM achieves

higher throughput and faster response speed by leveraging opti-

mised dynamic batching and efficient KV-cache management. In

our framework, we first generate 𝑀 = 30 initial CoTs, which are

then clustered into 𝑁 = 5 groups. To construct counterfactual exter-

nal knowledge, we extract 𝑇 = 5 entities from the original context

for replacement during counterfactual generation.

4.4 Main Results
Table 1 reports the performance of our proposed framework, CFD-

Prompting, across three LLM backbones and seven comparison

methods on four knowledge-intensive tasks. As the model size

increases from LLaMA-2 to GPT-3.5 Turbo, LLMs demonstrate

stronger reasoning capabilities, leading to overall improved per-

formance across all methods. CFD-Prompting consistently outper-

forms all baselines under each backbone model. Notably, it achieves

an average EM/F1 of 23.26/32.95 on LLaMA-2. On LLaMA-3, it

yields 40.62/53.43, surpassing CP by (+2.71) EM and (+4.54) F1. On
GPT-3.5 Turbo, CFD-Prompting reaches 48.35/60.74, setting new

state-of-the-art results with consistent gains across datasets. These

results demonstrate the strong generalisability and effectiveness of

our framework across both smaller and larger LLMs.

Among the non-causality-based prompting baselines, CoT w/o

ctx performs the worst due to its lack of external knowledge, which

limits its capacity for multi-hop reasoning. ICL improves perfor-

mance by providing in-context demonstrations, while CAD en-

hances answer generation by contrasting model outputs with and

without external knowledge. CoT-SC extends standard CoT by

aggregating multiple reasoning paths through majority voting,

thereby mitigating sampling variance.

DeCoT addresses internal bias by using external knowledge as

an instrumental variable to estimate the average causal effect of

CoTs on answers. It treats a CoT as logically correct if its ACE is

greater than zero. However, this binary threshold offers limited

granularity. Our framework instead estimates the causal effect of𝑄

on 𝐴, and ranks candidate answers accordingly. While CP applies

the standard front-door adjustment, it assumes no observed con-

founders influence both query and CoT, a condition often violated in

knowledge-intensive tasks. In contrast, CFD-Prompting leverages

the conditional front-door adjustment, which allows for observed

confounders such as external knowledge. This yields more accu-

rate de-biasing and leads to consistent performance improvements

across all benchmarks.
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Table 2: The results of the robustness study on the SciQ using
LLaMA-3. Best results are highlighted in bold.

SciQ SciQ-Injected SciQ-Shuffled

Method EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
ICL 24.10 41.45 18.33 34.97 19.46 35.76

CoT w/o ctx 35.29 48.48 35.29 48.48 35.29 48.48

CoT 50.32 67.52 43.78 60.32 46.15 62.14

CoT-SC 60.86 77.57 56.74 74.32 58.59 75.70

CAD 52.60 65.20 51.47 63.28 48.98 60.83

DeCoT 62.18 79.33 61.60 78.84 61.53 78.00

CP 61.59 77.30 58.74 74.60 59.79 76.68

Ours 63.12 79.65 62.29 79.39 62.17 78.90

4.5 Robustness Study
To evaluate the effectiveness and stability of our framework under

noisy conditions, we design a robustness experiment based on the

SciQ dataset. We introduce two types of perturbations: (1) SciQ-

Injected, where we inject irrelevant content (10% of the total) into

the support documents to simulate noise interference; and (2) SciQ-

Shuffled, where we randomly shuffle half of the support sentences

to assess the model’s adaptability to contextual disorder. We adopt

LLaMA-3 as the backbone model and report the results in Table 2.

As shown in the table, all methods except CoTw/o ctx experience

performance degradation under the perturbations. We observe that

CoT w/o ctx maintains unchanged results, as it does not utilise

external knowledge and is thus unaffected by modifications to the

context. Both DeCoT and CFD-Prompting demonstrate notable

robustness. This can be attributed to their use of counterfactual

external knowledge construction, which effectively mitigates the

impact of noisy or disordered information. Compared to DeCoT,

which selects entities based on frequency heuristics [44], CFD-

Prompting focuses on query-relevant entity selection combined

with conditional front-door adjustment, resulting in more reliable

performance. Specifically, CFD-Prompting achieves the highest

F1 scores of 79.39 on SciQ-Injected and 78.90 on SciQ-Shuffled.

Even under perturbations, the performance drop remains minimal,

highlighting the robustness and stability of our framework.

4.6 Hyper-parameter Study
We further study the influence of the number of initially gener-

ated CoTs (𝑀) and the number of clustering categories (𝑁 ) on the

performance of our framework. Table 3 summarises the experimen-

tal results, where the upper part reports the effect of varying 𝑀

while fixing 𝑁 = 5, and the lower part shows the effect of vary-

ing 𝑁 while fixing𝑀 = 30. The results indicate that increasing𝑀

generally improves model performance, while a larger 𝑁 enables

finer-grained clustering, further enhancing the robustness of causal

effect estimation. However, larger 𝑀 and 𝑁 values incur higher

token consumption and inference costs. To balance efficiency and

performance, we set𝑀 = 30 and 𝑁 = 5 as the default configuration

throughout all experiments.

Table 3: The performance of CFD-Prompting with different
numbers of CoTs (𝑀) and clusters (𝑁 ) across four knowledge-
intensive tasks.

SciQ HotpotQA WikiHop MuSiQue

M EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
10 60.75 74.77 45.75 61.20 25.63 35.29 22.77 31.98

20 62.55 76.36 46.83 62.38 27.10 36.85 23.50 32.76

30 63.12 79.65 47.80 62.41 27.20 37.55 24.35 34.12

40 62.13 76.45 47.17 62.61 27.25 36.72 24.27 33.65

50 63.57 79.79 48.20 63.71 27.50 37.53 25.17 34.21

N EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
1 60.63 74.64 46.19 60.46 26.30 36.28 22.85 32.10

3 63.03 76.89 47.40 62.56 26.66 36.54 23.27 32.62

5 63.12 79.65 47.80 62.41 27.20 37.55 24.35 34.12

7 62.50 76.33 47.51 62.80 27.39 37.74 24.23 33.95

9 63.34 80.08 48.06 62.88 27.73 37.63 24.53 34.78

4.7 Ablation Study
We conduct an ablation study to assess the contribution of three key

components in CFD-Prompting: (1) relevance-based entity weight-

ing during counterfactual construction, (2) encoder fine-tuning via

contrastive learning, and (3) CoT clustering using K-means. All

experiments are run on the LLaMA-3 model across four knowledge-

intensive datasets. For (1), we compare our default relevance-based

selection with two variants: (a) random selection and (b) reversed-

weight selection, where the least relevant entities are chosen. For

(2), we ablate contrastive learning by removing encoder fine-tuning.

For (3), we disable clustering by using the full set of CoTs without

K-means. These settings allow us to isolate and quantify the impact

of each design choice.

As shown in Table 4, removing any of the three components

in CFD-Prompting leads to consistent performance degradation

across all four datasets, validating their importance. The most sub-

stantial drop occurs when the relevance-based weighting strategy

is ablated. Specifically, replacing it with random selection reduces

average F1 from 53.43 to 51.42 (–2.01), while reversed weighting

further lowers it to 49.79 (–3.64). Contrastive learning also proves

essential. Removing encoder fine-tuning reduces the average F1

to 52.13, with notable drops on MuSiQue (–2.38) and HotpotQA

(–1.50), suggesting that enhancing the encoder’s ability to distin-

guish different CoT representations improves the accuracy of causal

effect estimation. Finally, removing K-means clustering leads to

moderate but consistent drops, indicating that promoting CoT di-

versity through clustering contributes to more stable and robust

causal effect estimation.

5 Related Work
5.1 LLMs for Knowledge-Intensive Tasks
Knowledge-intensive tasks [27, 42] require large-scale models to

effectively leverage external information during inference. A com-

mon solution is RAG [14, 29], which retrieves relevant knowledge

from external corpora based on the input and supplements the
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Table 4: The results of ablation study on four knowledge-intensive tasks using LLaMA-3. Best results are highlighted in bold.

SciQ HotpotQA WikiHop MuSiQue Average

Method EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
CFD-Promoting 63.12 79.65 47.80 62.41 27.20 37.55 24.35 34.12 40.62 53.43

w Random weighting 60.57 77.87 44.80 60.06 26.30 36.28 22.50 31.45 38.54 51.42

w Reversed weighting 60.18 76.43 40.85 56.11 25.63 35.82 21.93 30.80 37.15 49.79

w/o Contrastive learning 62.24 79.33 45.98 60.91 26.49 36.54 23.27 31.74 39.50 52.13

w/o K-means clustering 62.47 79.25 46.12 60.92 26.51 36.84 23.64 32.07 39.69 52.27

model’s internal reasoning process. Building on this idea, ICL [17]

provides input-output exemplars directly within the prompt, allow-

ing the model to generalise task-specific behaviours from observed

patterns. To further improve reasoning quality, CoT prompting [40]

encourages models to decompose complex problems into interme-

diate steps, enabling more systematic utilisation of retrieved or

contextual information. Beyond prompting strategies, structured

external resources such as knowledge graphs [15, 43] and optimisa-

tion techniques like Reinforcement Learning fromHuman Feedback

(RLHF) [12] have also been developed to guide model inference and

enhance the integration of external knowledge.

However, despite these advancements, large-scale models still ex-

hibit internal bias that can distort their use of external information,

often leading to flawed reasoning and incorrect answers.

5.2 Chain-of-Thought
In recent years, CoT prompting has been widely adopted to enhance

the reasoning capabilities of LLMs. This technique has shown signif-

icant performance improvements in domains such as mathematical

problem solving and symbolic reasoning [40]. However, traditional

CoT methods are prone to reasoning bias, where errors introduced

in the early steps of a reasoning chain can propagate through sub-

sequent steps, ultimately leading to biased final answers [36]. This

issue is particularly pronounced in knowledge-intensive tasks [28],

where longer reasoning chains and greater reliance on factual in-

formation increase the risk of compounding errors.

To address this, CoT-SC [38] generates multiple distinct reason-

ing paths and aggregates their outcomes to reduce the influence of

individual erroneous paths. While effective in mitigating random

inference errors, CoT-SC still suffers from internal bias in LLMs,

particularly in tasks involving complex knowledge structures [22].

5.3 De-biasing LLMs via Causal Inference
Causal inference aims to quantify the effect of a treatment on an

outcome [25, 26]. Supported by a rich theoretical foundation, vari-

ous methods have been developed to estimate causal effects even

in the presence of unobserved confounders [6–11]. Building on

these foundations, an increasing number of studies apply causal

inference to understand and mitigate biases in LLMs.

For example, Li et al. [20] propose a causality-guided prompting

framework to control the influence of social information on model

predictions. Other works explore causal modelling for de-biasing

tasks: Wang et al. [39] design a causal graph for relation extraction

and analyse counterfactual by removing textual context; Zhou et al.

[51] introduce Causal-Debias, which mitigates stereotypical asso-

ciations via causal disentanglement; and Wang et al. [37] develop

a structural causal model to address entity bias through tractable

interventions across entities, text, and outputs.

While these studies lay important groundwork, their scope is

largely limited to fairness-oriented tasks or fine-tuning strategies.

In contrast, recent causality-based prompting methods, such as

DeCoT [44], CP [49], and CAPITAL [30], aim to improve reason-

ing quality. DeCoT treats external knowledge as an instrumental

variable to estimate the average causal effect of CoTs on answers,

but offers only a coarse assessment. CP uses standard front-door

adjustment, which relies on the strong assumption that no observed

confounders exist between the prompt and the CoT, a condition

often violated in knowledge-intensive tasks.

In contrast, the proposed CFD-Prompting estimates the causal

effect of the query on the answer via conditional front-door adjust-

ment, allowing for finer-grained de-biasing and delivering consis-

tent state-of-the-art performance across benchmarks.

6 Conclusion
In this paper, we propose CFD-Prompting, a novel framework that

leverages conditional front-door adjustment to mitigate internal

bias in LLMs. CFD-Prompting constructs counterfactual external

knowledge and aligns reasoning representations via contrastive

learning, enabling more accurate estimation of the causal effect

between the query and the answer. Unlike existing methods, CFD-

Prompting relaxes restrictive assumptions and does not require

access to model logits, making it applicable to both open- and

closed-source LLMs. Extensive experiments on multiple knowledge-

intensive benchmarks demonstrate that CFD-Prompting consis-

tently improves reasoning accuracy and robustness, highlighting

its effectiveness and generalisability in real-world applications.
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