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Abstract

Large Language Models (LLMs) demonstrate human-like capabili-
ties in language understanding, reasoning, and generation, driving
interest in using LLM-based agents to simulate human feedback in
recommender systems. However, most existing approaches rely on
static user profiling, neglecting the temporal and dynamic nature
of user interests. This limitation stems from a disconnect between
language modelling and behaviour modelling, which constrains the
capacity of agents to represent sequential patterns. To address this
challenge, we propose a Dynamic Temporal-aware Agent-based
simulator for @ommend_er Systems, DyTA4Rec, which enables
agents to model and utilise evolving user behaviour based on histori-
cal interactions. DyTA4Rec features a dynamic updater for real-time
profile refinement, temporal-enhanced prompting for sequential
context, and self-adaptive aggregation for coherent feedback. Exper-
imental results at group and individual levels show that DyTA4Rec
significantly improves the alignment between simulated and actual
user behaviour by modelling dynamic characteristics and enhanc-
ing temporal awareness in LLM-based agents.!
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1 Introduction

Modern recommender systems (RSs) demand real-time interac-
tions to enable effective evaluation and iterative system improve-
ment [7, 19, 21]. To meet this need, recent studies have explored
the use of large language models (LLMs), which exhibit human-
level capabilities in general-purpose understanding, reasoning, and
decision making [13, 26], as credible proxies for interacting with
RSs [3, 12, 16, 20, 22, 25, 28]. LLM-based agents support dynamic
and nuanced user profiling and enable real-time, diverse evaluation
with minimal task-specific training. Specifically, LLMs function as
the central reasoning module, equipped with components for user
profiling, memory management, and action selection, to simulate
user behaviour in RSs [23].

Building upon this general LLM-based agent framework, vari-
ous agent architectures are developed and customised for specific
application scenarios to enhance the fidelity of user behaviour
simulation in RSs. Agent4Rec [20] performs statistical analysis on
user interaction patterns and incorporates the extracted insights
into user profiles, thereby improving the realism of simulated be-
haviours. Its action module also accounts for both user preferences
and emotion-driven responses. Extending beyond individual user
modelling, AgentCF [22] introduces user and item agents that en-
gage in interactive processes, enabling them to collaboratively learn
and adapt through mutual interaction. In contrast, RecAgent [16]
focuses on modelling the influence of social context by integrating
external relationships and social activities into the simulation of
user responses to recommendations.

Existing frameworks primarily focus on inferring user prefer-
ences and characteristics from static historical data, overlooking
the dynamic evolution of user interests and the temporal patterns
underlying user behaviour. Prior research has shown that incor-
porating temporal dynamics into user modelling can significantly
improve the accuracy and effectiveness of personalisation strate-
gies [1]. However, recent work by Hou et al. [10] shows that LLMs
have notable limitations in modelling sequential patterns, which
can hinder their ability to detect temporal shifts in user interests or
behavioural dynamics without dedicated architectural or training
interventions. The findings highlight the need for an enhanced
agent design that explicitly accounts for temporal information and
models user behaviour as a dynamic and sequential process.

To address the challenges, we propose DyTA4Rec, a novel LLM-
based simulator for recommendation systems that models both
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static and dynamic features and captures temporal behaviour pat-
terns for informed decision-making. Our main contributions are:

e DyTA4Rec presents a temporal-aware simulation framework
that improves the behavioural fidelity and temporal consistency
of agent interactions through sequential reasoning.

o The framework integrates a dynamic profile updater to capture
real-time short-term user modelling and a self-adaptive aggre-
gator for combining multi-dimensional behavioural signals.

o Experiments on the MovieLens-1M dataset show that DyTA4Rec
aligns agent behaviour with real user patterns in terms of accu-
racy and believability at both group and individual levels.

2 DyTA4Rec

The architecture of DyTA4Rec is shown in Fig. 1. It comprises four
main modules: (1) dynamic profile updater, (2) temporal pattern
extractor, (3) self-adaptive aggregator, and (4) memory module. The
following subsections provide a detailed explanation.

2.1 Dynamic Profile Updater

The user profile integrates both static, long-term attributes (e.g.,
demographic information, preferences, and behavioural patterns)
and dynamic, short-term features that reflect recent interactions
and evolving interests. Long-term preferences typically represent
stable user interests, whereas short-term preferences are more spe-
cific and context-dependent, capturing temporary intent [15]. This
hybrid representation enables the agent to form a comprehensive
and temporal-aware understanding of user behaviour, thereby sup-
porting more accurate and personalised simulation.

Long-term features are initialised based on the MovieLens-1M
(ML-1M) dataset [8]. To enrich user profiles beyond basic metadata,
we employ LLMs to extract personalities and item-level preferences
from each user’s historical interactions. In addition, we compute
statistical patterns to capture rating tendencies (e.g., distributions
over popular or highly rated items) and viewing behaviours (e.g.,
preferences for popular or highly rated content). These patterns
guide agent’s decision-making during simulation. The modular
design of the dynamic updater enables flexible incorporation of
dataset-specific features, enhancing its adaptability to a wide range
of application scenarios. Specifically, we leverage LLMs to extract
and summarise users’ recent behaviours and evolving interests
from their most recent interaction history, serving as short-term
features updated every n rounds.

2.2 Temporal Pattern Extractor

We propose a Temporal Pattern Extractor (TPE) to capture temporal
dynamics and sequential patterns in user behaviour by analysing
most recent interaction histories.

The process of TPE can be formulated as:

TPE(H, C) = f4*(f"5'"(H)) + f**4-(ICL(H)) 1

where f denotes utilising LLMs for clustering, prediction, and
decision-making. The function f%?" represents the action mecha-
nism of the agent, which may involve ranking candidates, selecting
the next interaction, or performing other task-specific operations.
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For each agent, we define the most recent n interactions as
H = {hy, hy, ..., hp}, where each h; = (i, 4, f;) represents an in-
teraction involving item i, a rating r;, and a generated feeling f;.
During simulation, the recommender system presents content to
the agent in a page-by-page manner, with each page containing
a candidate set C = {cy, ¢y, ..., cm }. Temporal information of H is
obtained from clustering f€/“st€"- and sequential prediction f*¢%-,
feluster. dentifies recurring behaviour patterns and detects poten-
tial shifts in user interests. f*¢9- captures ordered dependencies
in H to infer the most likely next interaction. This combination
enables agents to make time-consistent decisions that align with
recent interaction trajectories.

Additionally, we adopt a two-step prompting approach for clus-
tering pattern extraction to more effectively leverage the reasoning
capabilities of LLMs. Specifically, the LLM performs an independent
analysis, identifying key patterns or insights. Then, this interme-
diate analysis is provided as contextual information for the LLM
to execute the specific downstream task, such as prediction or
ranking. This structured process enhances the quality of reasoning
and improves task performance by separating understanding from
decision-making (as shown in Figure 2a).

We leverage LLMs through in-context learning (ICL) to enable
such temporal reasoning without additional training. LLMs have
demonstrated the ability to adapt to new tasks by conditioning
on a few prompt-based examples, eliminating the need for model
retraining [6, 18]. In our framework, both temporal clustering and
sequential prediction functions are instantiated directly from the
interaction history using LLMs.

2.3 Self-Adaptive Aggregator

We design an aggregation approach self-adaptive aggregator (SAA)
for integrating complementary behavioural information (i.e., long-
and short-term user traits and interests, sequential patterns, and
temporal clustering patterns and balancing their relative impor-
tance. We implement and compare Borda Count (BC) and Reciprocal
Rank Fusion (RRF) [5] as aggregation methods. Compared to aver-
aging or majority voting with fixed weights, our method assigns
personalised weights based on whether the interaction history con-
tains consistent temporal or sequential patterns. This enables more
context-sensitive information fusion and decision generation.

User profile and memory information serve as the foundation
of decision-making, hence the corresponding weight W; is set to 1.
For temporal reasoning, LLMs are employed to determine whether
the interaction history exhibits clear sequential patterns or tempo-
ral clusters. A weight W is allocated to the sequential prediction
output when sequential dependencies are observed, while a weight
W, is applied to the clustering-based outcome in the presence of
discernible temporal clustering patterns.

The aggregation process is defined as:

Aggregator(R) = Wy X ry+ Wy Xrs + Wp X 1 (2)

where R = {r}, rs,rc} denotes the results generated by different
modules. The term r; = w; X rll represents the output of the user
profile and memory module, rs represents the output of sequential
prediction, and r. represents the output of clustering analysis.
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Figure 1: An overview of the proposed DyTA4Rec, comprising an LLM-based generative agent and a recommender system.
The recommender system is designed as a flexible component that can be reconfigured to support different objectives. During
simulation, the agent replicates real user behaviour, enabling realistic interactions with the recommender system.

2.4 Memory Module

Memory constitutes the core of the human decision-making process
[17, 24]. Inspired by previous work [16, 20], we design a specialised
memory module for LLM-based simulation in recommendation.
Our memory module consists of two components: short-term mem-
ory and long-term memory. Specifically, the short-term memory
captures the recent interaction history directly and tracks the emo-
tional feelings, facilitating the system to adapt to the dynamic
environment. In contrast, the long-term memory stores high-level
and informative patterns that remain consistent over time, which
are extracted and summarised from short-term memory by LLM.

3 Experiments

3.1 Experimental Setup

We conduct experiments on the benchmark recommendation dataset
ML-1M [8]. We adopt the GPT-40-mini, due to budget constraints,
for simulations by default. To reduce output variability from the
language model, the temperature is set to 0.1 and the top-p value is
set to 0.9. All reported results are averaged over three independent
runs to ensure reliability and consistency.

We consider four baseline models: (1) Random, a random ranking
strategy; (2) RecAgent [16], an LLM-based agent simulation frame-
work; (3) BM25 [14], a text-based retrieval algorithm that ranks
items based on their textual similarity to user preferences; and (4)
UniSRec [9], a pre-trained sequential recommendation model.

The evaluation metrics include the normalised discounted cumu-
lative gain (nDCG@K), where K € {5, 10}, and the top-N hit rate
(HR@3). Following previous studies [9, 22, 27], we adopt the leave-
one-out evaluation strategy, where the last item in each historical
interaction sequence is treated as the ground-truth item.

We construct ranking candidates by including one ground-truth
item and nine negative samples. Empirical research [4, 10] identifies
position bias in RSs, where users are more likely to select items
near the top of the recommendation list. To mitigate this bias, we
apply a simple Direct Prompting strategy to explicitly instruct that
candidate positions carry no significance.

3.2 Main Results

We assess the ranking ability of each agent. Main results are
presented in Table 1. DyTA4Rec consistently outperforms the base-
line models in next-item prediction. The traditional retrieval-based

Table 1: Performance comparison on the ML-1M dataset.
The first block reports baseline results. A tailored version
of RecAgent is evaluated on ML-1M since the social rela-
tionship information of dataset is not provided. The second
block presents ablation studies of DyTA4Rec by varying be-
havioural inputs and removing the SAA. The third block
shows the performance of the DyTA4Rec using different
aggregation strategies. The best result in each row is high-
lighted in bold, and the second-best result is underlined.

Model | nDCG@5 nDCG@10 HR@3
Random 0.326 0.509 0.240
BM25 0.260 0.428 0.242
UniSRec 0.340 0.484 0.365
RecAgent 0.431 0.571 0.391
Long-term 0.434 0.568 0.360
Long- & Short-term 0.467 0.599 0.400
Sequential 0.466 0.584 0.418
Clustering 0.462 0.593 0.409
Sequential+Long-term 0.494 0.622 0.458
DyTA4Rec w/o SAA (BC) 0.489 0.602 0.427
DyTA4Rec w/o SAA (RRF) | 0.457 0.585 0.396
DyTA4Rec (BC) 0514 0.632 0467
DyTA4Rec (RRF) 0.551 0.639 0.480

method BM25 performs poorly across all metrics, reflecting the
limitations in capturing user intents. UniSRec performs better than
BM25 due to its temporal modelling ability. RecAgent shows fur-
ther improvement by incorporating generative reasoning. Notably,
DyTA4Rec with RRF achieves the best results, with 0.551 in nDCG@5,
0.639 in nDCG@10, and 0.480 in HR@3, demonstrating the effec-
tiveness of our temporal-aware and adaptive aggregation design.

Beyond ranking performance, we further evaluate the behavioural
alignment between simulated agents and real users at a macro
level. Following the setup in [20], we assess rating distribution con-
sistency on ML-1M. Figure 2b compares the ground-truth rating
distribution with those generated by the baseline simulator [16]
and our proposed simulator. DyTA4Rec outperforms the baseline
models in aligning with actual ratings, showing stronger consis-
tency between simulated agents and real human behaviour at the
group level.
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Figure 2: Performance comparisons across various settings: (a) ranking performance under single-step and two-step prompting
strategies; (b) rating distribution alignment between ground truth and simulated data (RecAgent vs. DyTA4Rec); (c) impact of
ground-truth item position on simulation outcomes; (d) effect of interaction history length; (e) effect of ICL example count.

Our study also investigate the impact of position bias within
simulations. Figure 2c shows that the performance of LLM-based
agents is highly sensitive to the recommended items position, as
the selection is easily influenced by items order. Without explicit
prompts indicating that item positions are random or irrelevant,
agents often overvalue top-ranked options. This reflects real-world
position bias where top-listed items receive disproportionate at-
tention and engagement [2]. To address this, we design an explicit
prompt to inform the agent of the randomness of item positions,
effectively reducing position bias in its decisions.

3.3 Ablation Study

We conduct an ablation study to examine the contribution of dif-
ferent components in DyTA4Rec (second block, Table 1). The user
profile integrates both long-term and short-term features. Long-
term features are initialised from real-world data and remain fixed
throughout the simulation, while short-term features are dynami-
cally generated and updated by the profile updater based on recent
interactions. To assess the effect of dynamic profiling, we compare
two configurations: using only long-term features (Long-term) and
combining long-term with short-term features (Long & Short-term).

We further study the impact of each temporal reasoning strategy.
The Sequential and Clustering variants enable only the sequen-
tial prediction or temporal clustering module, respectively, while
Sequential + Long-term combines sequential reasoning with long-
term profiling. In addition, we disable the SAA and apply static
aggregation (SA) strategies, namely BC and RREF, to examine the
importance of adaptive weighting.

Table 1 shows that incorporating short-term features yields clear
improvements over using long-term profiling alone (e.g., nDCG@5
increases from 0.434 to 0.467), confirming the value of dynamic fea-
tures tracking. Similarly, enabling sequential or clustering reason-
ing individually improves performance, and combining sequential
signals with long-term profiling leads to further gains. Removing
the SAA also results in performance degradation, demonstrating
the effectiveness of adaptive strategy integration. These results
highlight the importance of both temporal reasoning and dynamic
profiling in achieving high-quality simulation.

3.4 Parameter Analysis

We investigate the impact of two key parameters in DyTA4Rec:
the length of the interaction history and the number of in-context

examples used for sequential behaviour modelling. These param-
eters influence how effectively the agent can capture temporal
dependencies and recent user intents during the simulation.

First, we examine the impact of interaction history length on
performance. As shown in Figure 2e, the performance of all three
agents tends to decline as the length of the interaction history in-
creases. This may be attributed to two aspects: (1) limited ability
of LLMs to extract and reason over long behavioural sequences
although they can process long textual inputs [10, 11]; and (2) long
sequence may distract LLMs’ attention from most recent interac-
tions, which are often more informative for decision-making and
more accurately reflect the user’s current intent.

Second, we study the influence of ICL by varying the number of
in-context examples in the prompt. The interaction history length
is set to 10 and the most recent k items are selected as ICL exam-
ples, with k € {0,3, 6,9}. As shown in Figure 2e, using 3 examples
achieves the best overall performance. This suggests that a moder-
ate number of examples is sufficient to enhance temporal reasoning,
while excessive prompts may introduce noises.

4 Conclusion and Future Work

In this paper, we present DyTA4Rec, a novel LLM-based simulator
that enhances the temporal awareness of agents in recommendation
scenarios. By integrating a dynamic profile updater, a temporal pat-
tern extractor, and a self-adaptive aggregator, DyTA4Rec captures
both static and evolving user behaviour patterns for more realistic
simulations. Experiments demonstrate improved alignment with
real user preferences at both individual and group levels. However,
the effectiveness of LLM-based agents remains sensitive to prompt
design and prone to overconfident outputs. Future work will ex-
plore integrating an extra model to guide the output generation,
aiming to mitigate the prompt sensitivity. We also plan to generalise
our simulation framework on different benchmark datasets across
diverse domains to assess its generalisability and robustness.
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