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Abstract
Recommendation algorithms are typically evaluated on various

datasets and compared against other algorithms employing diverse

strategies. However, current evaluation practices predominantly

rely on rank-based metrics, focusing solely on performance out-

comes while overlooking the latent traits of datasets and recommen-

dation algorithms. In this paper, we propose a bi-directional Item Re-

sponse Theory (Bi-ReIRT
1
) framework, which offers a fine-grained

evaluation by simultaneously modelling the latent traits of recom-

mendation algorithms (i.e., their ability) and datasets (i.e., their in-

herent challenges). This is the first work to apply the IRT framework

for evaluating recommendation algorithms on the dataset level. The

Bi-ReIRT framework enables visualisations of algorithms’ perfor-

mance across datasets with varying levels of inherent challenge. We

conduct extensive experiments across a portfolio of recommenda-

tion algorithms and datasets, exploring the implications of key IRT

parameters such as discrimination, difficulty, and ability. Moreover,

the interpretability of these parameters provides deeper insights

into the characteristics of both recommendation algorithms and

datasets.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Recommender systems, Item Response Theory.
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Figure 1: The architecture of Bi-ReIRT comprises two direc-
tions. The first direction, depicted on the left side, treats each
dataset as an item and each recommendation algorithm as
a respondent. The second direction, shown on the right side,
reverses this arrangement by treating each recommendation
algorithm as an item and each dataset as a respondent. Please
refer to Section 2 for an introduction to the concepts of item
and respondent within Bi-ReIRT.

Bi-directional Item Response Theory. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation emai (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 4 pages. https://doi.org/

XXXXXXX.XXXXXXX

1 Introduction
Experimental evaluation is vital for recommender systems, espe-

cially for tasks where theoretical evaluation is impractical. Current

evaluation practices typically rely on diverse datasets and rank-

based metrics (e.g., nDCG@k) [2]. However, such comparisons only

reveal that algorithm A outperforms B, without providing insights

into the underlying reasons for success or failure. To develop and

enhance recommendation algorithms, it is essential to understand

where and why algorithms fall short and identify datasets that

present significant challenges to state-of-the-art algorithms.

Item Response Theory (IRT) was originally developed in the field

of psychometrics to model the interaction between respondents

and test items, providing insights into the respondents’ abilities and

the characteristics of test items [3]. In recent years, IRT has been

proposed as a tool to evaluate performance in machine learning

(ML) models [4, 6]. By treating datasets as items and ML models as

respondents, IRT allows us to reinterpret the ability of an ML model

in terms of the difficulty and discrimination levels of the datasets.

1

https://github.com/IRON13/Bi-ReIRT
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Furthermore, Liu et al. [5] extend this concept to recommender

systems by proposing an evaluation framework based on IRT. In

their framework, recommendation algorithms are treated as re-

spondents to evaluate their latent abilities, while the (user, positive

item, negative item) triples are used as responses to estimate item

characteristics, such as difficulty and discrimination, which reflect

user preferences. However, this framework operates at the instance

level, relying on binary responses and the 3PL (3-parameter) IRT

model. This approach inherently limits its ability to leverage rank-

based metrics across a variety of datasets, as these metrics yield

continuous outcomes rather than binary results.

To address the limitations of binary responses, we propose Bi-

ReIRT, a framework based on beta-IRT that offers greater flexibility

in modelling continuous responses across diverse items. Addition-

ally, our framework introduces a bi-directional evaluation process

on the dataset level, enabling the simultaneous learning of the la-

tent traits of recommendation algorithms (i.e., their ability) and

datasets (i.e., their inherent challenges). In summary, this paper

makes the following contributions:

• To the best of our knowledge, this is the first work to apply the

IRT framework for evaluating recommendation algorithms on

the dataset level. This framework addresses the limitations of

instance level evaluations by providing a bi-directional process

to simultaneously learn the latent traits of recommendation

algorithms and datasets.

• We introduce visualisations of recommendation algorithms’

performance across datasets with varying levels of inherent

challenge. These visualisations offer deeper insights into the

interaction between recommendation algorithms and datasets,

uncovering patterns and revealing underlying relationships.

• We evaluate the effectiveness of the Bi-ReIRT framework using

a portfolio of datasets and a variety of recommendation algo-

rithms. Our experimental results demonstrate that Bi-ReIRT

provides comprehensive and interpretable evaluations of utility.

2 Methodology
In this section, we introduce the proposed Bi-ReIRT framework. We

begin by presenting the backbone beta IRT model. Next, we briefly

interpret the learned parameters from the two directions. Finally,

we outline the workflow of the proposed framework.

In Item Response Theory (IRT), an item is a test question or

measurement unit with characteristics like difficulty (i.e., 𝜹) and
discrimination (i.e., 𝒂). A response is a respondent’s reaction to an

item. IRT models the relationship between a respondent’s ability

(i.e., 𝜽 ) and the corresponding response, offering insights into both

item quality and respondent performance.

We adopt the beta IRT, which has been demonstrated to capture a

broader range of item characteristic curve (ICC) shapes compared to

the logistic IRT [1]. In beta IRT, 𝑝𝑖 𝑗 is the observed response of 𝑖-th

respondent to 𝑗-th item, which is drawn from the Beta distribution,

𝑝𝑖 𝑗 ∼ Beta(𝛼𝑖 𝑗 , 𝛽𝑖 𝑗 ), 𝛼𝑖 𝑗 = 𝑓𝛼 (𝜽𝑖 , 𝜹 𝑗 , 𝒂 𝑗 ) =
(
𝜽𝑖
𝜹 𝑗

)𝒂 𝑗

,

𝛽𝑖 𝑗 = 𝑓𝛽 (𝜽𝑖 , 𝜹 𝑗 , 𝒂 𝑗 ) =
(
1 − 𝜽𝑖
1 − 𝜹 𝑗

)𝒂 𝑗

,

(1)

where the parameters 𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 are computed by 𝜽𝑖 , 𝜹 𝑗 , and 𝒂 𝑗 .

Table 1: The parameter setting in Bi-ReIRT and original IRT.

Original IRT
Bi-ReIRT

- Direction 1○
Bi-ReIRT

- Direction 2○

Setting

𝑁 respondents

answering𝑀

test items

𝑁 recommendation

algorithms evaluated

on𝑀 datasets

𝑀 datasets evaluated

by 𝑁 recommendation

algorithms

Item

Parameters

𝜹 𝑗 : Test item

difficulty

𝜹 𝑗 : Dataset difficulty

𝜹𝑖 : Recommendation

algorithm difficulty

limit

𝒂 𝑗 : Test item

discrimination

𝒂 𝑗 : Dataset

discrimination

𝒂𝑖 : Recommendation

algorithm consistency

Respondent

Parame-

ters

𝜽𝑖 :
Respondent

ability

𝜽𝑖 : Recommendation

algorithm ability

𝜽 𝑗 : The inherent

challenge of the

dataset

The beta distribution allows us to generate non-logistic ICCs.

The ICC is defined as follows,

E[𝑝𝑖 𝑗 |𝜽𝑖 , 𝜹 𝑗 , 𝒂 𝑗 ] =
𝛼𝑖 𝑗

𝛼𝑖 𝑗 + 𝛽𝑖 𝑗
=

1

1 +
(

𝜹 𝑗

1−𝜹 𝑗

)𝒂 𝑗
(

𝜽𝑖
1−𝜽𝑖

)−𝒂 𝑗
.

(2)

IRT has been applied to performance evaluation in the ML do-

main, with responses adapted to suit different types of tasks. For

instance, in multi-class classification tasks, responses are repre-

sented by the probabilities that classifiers assign to the correct class

for each instance. In our framework, responses are derived from

the recommendation algorithm’s rank-based metric results (e.g.,

nDCG@k) on each dataset. Notably, our framework does not im-

pose restrictions on the choice of rank-based metrics. In section 3.3,

we demonstrate the generalisability of our frameworkwith different

rank-based metrics.

The architecture of Bi-ReIRT is shown in Figure 1. Given 𝑁

recommendation algorithms 𝑅 = (𝑅1, 𝑅2, . . . , 𝑅𝑁 ) and 𝑀 datasets

𝐷 = (𝐷1, 𝐷2, . . . , 𝐷𝑀 ), our goal is to evaluate recommendation algo-

rithms on the dataset level in two directions. Here, 𝑖 represents the

index of the recommendation algorithm (𝑖 = 1, . . . , 𝑁 ), with each

𝑅𝑖 corresponding to a specific algorithm in the set 𝑅. Similarly, 𝑗

represents the index of the dataset ( 𝑗 = 1, . . . , 𝑀), with each 𝐷 𝑗 cor-

responding to a specific dataset in the set 𝐷 . We map the response

𝑝𝑖 𝑗 to a rank-based metric (e.g., 𝑛𝐷𝐶𝐺@10𝑖 𝑗 ), which captures the

performance of the 𝑖-th recommendation algorithm on the 𝑗-th

dataset. Through bi-directional analysis, we define the two ICC

functions as follows:

𝑛𝐷𝐶𝐺@10𝑖 𝑗 =
1

1 +
(

𝜹 𝑗

1−𝜹 𝑗

)𝒂 𝑗
(

𝜽𝑖
1−𝜽𝑖

)−𝒂 𝑗︸                          ︷︷                          ︸
(3)

=
1

1 +
(

𝜹𝑖
1−𝜹𝑖

)𝒂𝑖 ( 𝜽 𝑗
1−𝜽 𝑗

)−𝒂𝑖︸                         ︷︷                         ︸
(4)

,

where 𝜽 and 𝜹 are drawn from Beta distributions, with their priors

set to Beta(1, 1) in a general setting. 𝒂 is drawn from a normal

distribution with a prior mean of 1 and variance 𝜎2
, where 𝜎2

is a

hyperparameter. The default prior mean of 𝒂 is set to 1 instead of 0

because 𝒂 functions as a power factor in this context.

Equation (3) represents Direction 1○ (left side of Figure 1), where

each dataset is treated as an item and each recommendation al-

gorithm as a respondent. Conversely, Equation (4) represents Di-

rection 2○ (right side of Figure 1), where each recommendation

2
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algorithm is treated as an item and each dataset is treated as a re-

spondent. We observe that while the differences in the subscript are

minor, they imply significant variations in the underlying meaning.

The interpretation of each parameter in the two directions and

compared with their counterparts in the original IRT setting are

shown in Table 1.

The accuracy of the Bi-ReIRT framework’s analysis depends

on the quality of the data [3]. To ensure the effectiveness of the

framework, we make the following assumption:

Assumption 1. Given a set of recommendation algorithms 𝑅 =

{𝑅1, 𝑅2, . . . , 𝑅𝑁 }, these algorithms are expected to perform differently
across datasets. Performance is measured using rank-based metrics
(e.g., 𝑛𝐷𝐶𝐺@𝑘), with sufficient diversity required to highlight differ-
ences among the algorithms.

In this context, diversity implies that the performance of recom-

mendation algorithms should vary notably across datasets. Some

recommendation algorithms should excel on certain datasets while

others perform poorly, ensuring a wide range of performance.

This assumption is both practical and critical for the success of

the Bi-ReIRT framework. It is easily satisfied in real-world scenarios

since recommendation algorithms often exhibit varied levels of ef-

fectiveness due to their inherent design choices, hyper-parameters,

and the specific characteristics of the datasets they process. The Bi-

ReIRT framework cannot function effectively if all recommendation

algorithms achieve identical performance on all datasets. Evaluat-

ing a set of algorithms is meaningless under such circumstances,

as there would be no meaningful variability to analyse.

The workflow of Bi-ReIRT is as follows:

i Preparing the input matrix. Applying 𝑁 recommendation al-

gorithms to𝑀 datasets and recording each performance result

using the selected rank-based metrics produces an 𝑁 ×𝑀 matrix.

Each entry in the matrix represents the performance of a specific

recommendation algorithm on a particular dataset.

ii Fitting the beta-IRT model in a bi-directional manner. The fit-

ting process is shown in two directions. Equation (3) represents

Direction 1○, while Equation (4) represents Direction 2○. The

interpretation of the learned parameters from each direction is

illustrated in Figure 1.

iii Analysing the evaluation results. The evaluation results are anal-

ysed using the learned parameters. The dataset’s ICC is gener-

ated using 𝜹 𝑗 , 𝒂 𝑗 , and 𝜽𝑖 , while the recommendation algorithm’s

ICC is generated using 𝜹𝑖 , 𝒂𝑖 , and 𝜽 𝑗 . Based on the learned traits,

recommendation algorithms are analysed by their ability, and

datasets are analysed by their inherent challenges.

3 Experiments
3.1 Experimental Setup
We use RecBole [7] as the framework to train 17 recommendation

algorithms across 11 datasets, 7 of which are from the Amazon

2023 dataset collection. The algorithms and datasets used in our

experiments are listed in Table 2. Due to space constraints, refer-

ences for the selected recommendation algorithms and datasets

are not included; detailed descriptions can be found in the RecBole

documentation
2
. It is worth mentioning that training on large and

2
https://recbole.io/docs/user_guide/model_intro.html

Table 2: The selected 17 recommendation algorithms and 11
datasets.

Recommendation algorithm Dataset

Random, Pop, ItemKNN (2004), BPR

(2009), ENMF (2020), DMF (2017),

NNCF (2017), MultiDAE (2018),

MultiVAE (2018), NCEPLRec (2019),

RecVAE (2020), CDAE (2020), LINE

(2015), SGL (2021), DiffRec (2023),

RaCT (2020), SimpleX (2021)

Subscription_Boxes,

Magazine_Subscriptions,

Digital_Music, Gift_Cards,

Health_and_Personal_Care,

Handmade_Products,

All_Beauty, ml-100k, ml-1m,

epinions, ModCloth

complex datasets demands substantial time and computational re-

sources. Following RecBole’s efficiency analysis
3
, we prioritise rec-

ommendation algorithms with relatively fast training speeds to

ensure computational feasibility.

To manage the training of 17 recommendation algorithms across

11 datasets, we use the default parameters suggested by RecBole

and train each algorithm for 100 epochs. All recommendation al-

gorithms are trained on two NVIDIA Tesla P40 GPUs, each with

a maximum memory capacity of 24 GB. We use nDCG@10 as the

primary rank-based metric in the proposed Bi-ReIRT framework.

To demonstrate the generalisability of our framework, we also

include four additional popular rank-based evaluation metrics: Pre-

cision@10, Recall@10, Hit@10, and MRR@10.

3.2 Experimental Results
The experimental results are presented in Figure 2 and Figure 3. The

left plot in Figure 2 analyses dataset difficulty and discrimination.

The vertical axis represents dataset difficulty, where higher values

signify datasets that are more difficult for most recommendation

algorithms (i.e., the ICCs mostly remain in the lower region). The

horizontal axis represents dataset discrimination, where higher

values indicate a stronger ability to differentiate between the per-

formance of different algorithms (i.e., the ICCs are steeper). The

right plot in Figure 2 illustrates the relationship between recommen-

dation algorithm ability (i.e., the latent trait learned by Direction

1○) and performance. Each ICC depicts how performance changes

as algorithm ability increases. The horizontal axis represents al-

gorithm ability, while the vertical axis shows performance, with

higher values indicating better outcomes.

From Figure 2, we observe that the selected algorithms have

limited ability to achieve high performance, with their ability range

being [0.004, 0.541] as shown in the shaded area. All ICCs show

an increasing trend in performance as algorithm ability increases.

The dataset Health_and_Personal_Care exhibits the highest dis-

crimination value, reflected by its steep ICC. We can infer that if a

recommendation algorithm has an ability value higher than 0.75,

its performance will become more sensitive to increases in ability,

yielding greater benefits.

The left plot in Figure 3 examines recommendation algorithm

consistency and difficulty limit. The vertical axis represents the dif-

ficulty limit, where higher values signify more powerful algorithms

for most datasets (i.e., ICCs remain higher). The horizontal axis rep-

resents algorithm consistency, where higher values indicate greater

3
https://github.com/RUCAIBox/RecBole/blob/master/asset/time_test_result/General_

recommendation.md

3

https://recbole.io/docs/user_guide/model_intro.html
https://github.com/RUCAIBox/RecBole/blob/master/asset/time_test_result/General_recommendation.md
https://github.com/RUCAIBox/RecBole/blob/master/asset/time_test_result/General_recommendation.md
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Figure 2: The results for Direction 1○. The scatter plot (left)
shows the dataset discrimination and difficulty, while the
ICC (right) for each dataset is also presented. The shaded area
indicates the ability range of the selected recommendation
algorithms.

Figure 3: The results for Direction 2○. The scatter plot (left)
shows the recommendation algorithm consistency and diffi-
culty limit, while the ICC (right) for each recommendation
algorithm is also presented. The shaded area indicates the
range of inherent challenges of the selected datasets.

sensitivity to dataset challenges (i.e., steeper ICCs). The right plot

in Figure 3 visualises recommendation algorithms’ performance

across datasets with varying challenges (i.e., the latent trait learned

by Direction 2○). Each ICC shows how performance changes as

dataset difficulty increases. The horizontal axis represents algo-

rithm ability, and the vertical axis shows the inherent challenge of

the dataset, with higher values indicating greater difficulty.

From Figure 3, we observe that the selected datasets have a high

level of inherent challenge, with a range of [0.343, 0.994], as shown

in the shaded area. While ItemKNN appears to be the best algorithm

with the highest difficulty limit, it performs well only on datasets

with low inherent challenges (i.e., those less challenging than ml-

100k). DiffRec, on the other hand, is the most suitable candidate

Table 3: The top 2 and bottom 2 ability value of recommen-
dation algorithms and inherent challenge of datasets based
on different rank-based metrics.

# ndcg@10 hit@10 mrr@10 recall@10 precision@10

1 DiffRec (0.536) RaCT (0.644) DiffRec (0.610) RaCT (0.523) DiffRec (0.374)

2 RaCT (0.532) DiffRec (0.630) RecVAE (0.602) MultiVAE (0.523) RecVAE (0.365)

... ... ... ... ... ...

16 ENMF (0.036) ENMF (0.039) ENMF (0.010) NCEPLRec (0.169) ENMF (0.123)

17 Random (0.004) Random (0.003) Random (0.001) Random (0.005) Random (0.032)

1 All_Beauty (0.994) Handmade (0.993) All_Beauty (0.992) All_Beauty (0.989) All_Beauty (0.959)

2 Handmade (0.993) All_Beauty (0.992) Handmade (0.992) Handmade (0.983) Handmade (0.959)

... ... ... ... ... ...

10 ml-1m (0.350) ml-1m (0.089) ml-1m (0.207) ml-1m (0.492) ml-1m (0.378)

11 ml-100k (0.343) ml-100k (0.082) ml-100k (0.204) ml-100k (0.492) ml-100k (0.361)

for the given portfolio of datasets, as its ICC outperforms other

algorithms within most of the shaded range.

Overall, Directions 1○ and 2○ provide complementary analyses.

The recommendation algorithm ability learned by Direction 1○ is

the representation of algorithm difficulty limits and consistency,

while the inherent challenge of the dataset learned by Direction 2○
is the representation of dataset difficulty and discrimination.

3.3 Generalisability Analysis
We use different rank-based metrics to demonstrate the generalis-

ability of Bi-ReIRT, as shown in Table 3. The results show slight

variations in the rankings of recommendation algorithms by ability

values and datasets by inherent challenge values, which reflect

the different performance aspects emphasised by each rank-based

metric. We note that the choice of metrics should align with the

specific task and context, which is beyond the scope of our work.

4 Conclusion
In this paper, we propose Bi-ReIRT, a beta-IRT-based framework

for evaluating recommendation algorithms at the dataset level. By

modelling continuous responses and incorporating rank-based met-

rics, Bi-ReIRT enables bi-directional analysis of recommendation

algorithm ability and dataset inherent challenge, providing deeper

insights into their interactions. Experimental results confirm its ef-

fectiveness in delivering interpretable and fine-grained evaluations

across diverse datasets and algorithms.
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