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Abstract. The increasing application of machine learning techniques
in everyday decision-making processes has brought concerns about the
fairness of algorithmic decision-making. This paper concerns the problem
of collider bias which produces spurious associations in fairness assess-
ment and develops theorems to guide fairness assessment avoiding the
collider bias. We consider a real-world application of auditing a trained
classifier by an audit agency. We propose an unbiased assessment algo-
rithm by utilising the developed theorems to reduce collider biases in the
assessment. Experiments and simulations show the proposed algorithm
reduces collider biases significantly in the assessment and is promising in
auditing trained classifiers.
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1 Introduction

Fig. 1. The process of audit.

There are increasing concerns over the fair-
ness of decision making algorithms with the
wide use of machine learning in various appli-
cations, such as job hiring, credit scoring
and home loan since discrimination can be
inadvertently introduced into machine learn-
ing models. To prevent unfairness in a model
from spreading in society, audit techniques are
needed for the independent authority to audit machine learning models. Figure 1
shows an audit process. An audit agency accesses a model of a company and has
its own audit cases for assessing the fairness of the model. The audit agency does
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not have access to the training data set but has the regulatory policy. In this
paper, we use a causal graph to represent the regulatory policy. The company
may use additional variables that are not specified in the regulatory policy to
build its models to improve prediction accuracy.

Situation test has been used in the U.S. to detect discrimination in recruit-
ment [2], which is a controlled experiment approach for analysing employers’
decisions on job applicants’ characteristics, as illustrated with the following
examples. Pairs of research assistants are sent to apply for the same job, and
each pair of the pretended applicants have the same qualifications and expe-
rience related to the job but have different values for their protected variable,
such as male/female or young/old. Discrimination is detected if the favourable
decisions are unequal between groups with different protected values.

The above described situation test can be simulated in an audit process, and
we call it Naive Situation Test (NST) in this paper. We feed two inputs repre-
senting two individuals whose variable values are identical except their protected
values to a machine learning model. If the model provides different decisions,
NST will detect the model as discriminatory.

Table 1. An example of incorrect
detection by NST on a classifier.

Race Edu Sub Predicted.Sal
white high A >50k
black high A >50k
white high A >50k
black high B ≤50k
black high B ≤50k
white high B ≤50k

NST ⇒ “fair”

f(white, high, A)=f(black, high, A)

f(white, high, B)=f(black, high, B)

NST may produce an incorrect detec-
tion. We use the following example to show
this. Consider a classifier f() used by a
company to determine employees’ salaries as
salary = f(race, education, suburb). Some
predicted outcomes by the model are shown in
Table 1. Based on NST, the black people are
not discriminated against since with the same
education and suburb, both white and black
people are predicted to have the same salary.
However, Suburb is an irrelevant variable for determining the Salary. Without
considering the Suburb, with the same level of Education, 2/3 white people
receive a salary higher than 50K while only 1/3 black people receive a salary of
50K or higher. Hence, black people are discriminated against by the model.

Fig. 2. The causal graph for
the above example.

The incorrect detection by NST is caused by
collider bias. We use a causal graph, formally
defined in Sect. 2, to explain the collider bias.
Causal relationships of variables in the above
example are shown using the causal graph in Fig. 2
where a directed edge represents a causal relation-
ship. The suburb is a collider since two edges “col-
lide” at it. Conditioning on a collider, an associa-
tion is formed between the two variables but it is spurious [5]. In the example,
the spurious association cancels the association due to the causal relationship
between Race and Salary and hides the true discrimination. Collider bias is
related to the selection bias [10]. In a classifier, conditioning on a variable is
equivalent to selecting sub-populations using the values of the variable. If the
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variable is a collider, a selection bias in each sub-population is resulted. We call
this bias collider bias in this paper.

There is no existing alternative method to NST to audit classifiers. Most
methods, to be reviewed in the related work, need to access the training data
set and suffer from collider bias. A causal-based situation test (CST) [25] does
not suffer from collider bias, but needs to access the training data set too. The
audit cases used by an audit agency are only a small number of individual cases
which do not represent the population. Collecting a representative sample of the
population needs a significant resource. Therefore, a data-based audit method
is not applicable. We make the following contributions in this paper.

– We study collider bias in fairness assessment and present theorems to avoid
collider bias. Our theoretical results give a principled guidance on which vari-
ables can be used for fairness assessment and also for building fair classifiers.

– We investigate the problem of auditing machine learning models and propose
an Unbiased Situation Test (UST) algorithm for auditing without accessing
training data or an unbiased sample of the population. Experiments show
that UST can effectively reduce collider bias.

2 Background

We present the necessary background of causal inference. We use upper case
letters to represent variables and bold-faced upper case letters to denote sets of
variables. The values of variables are represented using lower case letters.

Let G = (V,E) be a graph, where V = {V1, . . . , Vp} is the set of nodes and
E is the set of edges between the nodes, i.e. E ⊆ V ×V. A path π is a sequence
of distinct nodes such that every pair of successive nodes are adjacent in G. A
path π is a directed path if all edges along the path are directed edges. A path
between (Vi, Vj) is a backdoor path with respect to Vi if it has an arrow into
Vi. Given a path π, Vk is a collider node on π if there are two edges incident
like Vi → Vk ← Vj . In G, if there exists Vi → Vj , Vi is a parent of Vj and we
use Pa(Vj) to denote the set of all parents of Vj . In a directed path π, Vi is an
ancestor of Vj and Vj is a descendant of Vi if all arrows point to Vj .

A DAG (Directed Acyclic Graph) is a directed graph without directed cycles.
With the following two assumptions, a DAG links to a distribution.

Definition 1 (Markov condition [17]). Given a DAG G = (V,E) and P (V),
the joint probability distribution of V, G satisfies the Markov condition if for
∀Vi ∈ V, Vi is probabilistically independent of all non-descendants of Vi, given
the parents of Vi.

When the Markov condition holds, P (V) can be factorised into: P (V) =∏
i P (Vi | Pa(Vi)).

Definition 2 (Faithfulness [20]). A DAG G = (V,E) is faithful to P (V) iff
every independence presenting in P (V) is entailed by G which fulfills the Markov
condition. A distribution P (V) is faithful to a DAG G iff there exists DAG G
which is faithful to P (V).
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With the above two assumptions, we can read the independencies between
variables in P (V ) from a DAG using the Definition 8 in Appendix A. To conduct
causal inference with DAGs, we make the following assumptions.

Definition 3 (Causal sufficiency [20]). A data set satisfies causal sufficiency
if for every pair of variables (Vi, Vj) in V, all their common causes are also in V.

With a DAG, if we interpret a node’s parent as its direct cause, the DAG
is known as a causal DAG. We can learn a causal DAG from data when the
assumptions of causal sufficiency, faithfulness and Markov condition are satisfied.

An intervention, which forces a variable to take a value, can be represented
by a do operator. For example, do(X = 1) means X is intervened to take value
1. P (y | do(X = 1)) is an interventional probability. Let us understand do in an
ideal experiment.

Definition 4 (Direct effect [17]). The direct effect of X on Y is P (y | do(X =
x), do(V\XY = v)) where V\XY means all other variables except X and Y .

In order to study the relationship between X on Y , all other variable are con-
trolled in the ideal experiment. To infer interventional probabilities (by reducing
them to normal conditional probabilities) with a causal DAG, the rules of do-
calculus [17] are necessary. Detailed description of these rules are available in
Appendix A, and we used these rules to proof our theorems.

3 Problem Definition

A classifier (prediction model) has been built by a company/organisation from a
training data set which contains a binary protected variable A, a binary decision
outcome Y , and a set of relevant variables of Y , X, since variables independent
of Y are not used for predicting Y . An agency wants to audit the model using
some cases. We make the following assumptions about the audit.

Assumption 1 1. The regulatory policy has specified the causal relationships
among the factors and Y , and uses a causal DAG to indicate. The factors are
ancestral variables of Y including all direct causes of Y .

2. The audit agency has no access to the model training data or an unbiased
sample of the population. The agency however has access to the distributional
statistics from some sources, such as government census data.

3. The company or organisation has used all the legitimate factors to comply
with the regulatory policy. However, some other variables are also used by the
model to enhance the prediction performance.

In the theorem development, we assume that there is a DAG that is consistent
with the regulatory policy. In the algorithm, we do not need the complete DAG,
but ancestral variables of Y and colliders in the descendant nodes of Y .
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We first define the criterion for auditing. We use Controlled Direct Effect
(CDE) [18] to measure fairness. CDE is extended Definition 4 to simulate an
ideal experiment. The alternative definitions are path specific causal effect [4,21]
and counterfactual fairness [12], we will discuss why the alternatives have not
been used after Definition 5.

The protected variables in this paper include redline variables, which are
the descendants of protected variables. The redline variables are recognised as a
proxy of protected variables and may cause some discrimination [11]. Some com-
panies or organisations build the models under the concept of fairness through
awareness [7], which means the classifier functions may not use the protected
variables as input. In this case, the redline variables will be considered as the
protected variables.

Definition 5. (Fairness score). Given a causal DAG G representing the
regulatory policy, A, X, and Y as described above. The fairness score is of
an individual (or a subgroup) X = xi is defined by Controlled Direct Effect,
CDE(xi) = P (y | do(A = 1), do(X = xi)) − P (y | do(A = 0), do(X = xi)),
where y denotes Y = 1.

The rationale of the above definition is that we conduct a controlled exper-
iment by intervening the protected variable, and controlling all other variables
to xi. The decision for xi is fair if the intervention does not change the outcome.

Unlike previous works [7–9,15], our definition of fairness score is based on the
CDE which uses intervention. Thus the spurious association between A and Y
caused by conditioning on colliders will be avoided. We do not use counterfactual
fairness [12] in our fairness definition since it needs stronger assumptions and
poses a practical challenge. To estimate counterfactual outcomes, there is a need
for knowing the full causal model and latent background knowledge. Both are
not available in our problem setting. Some other definitions [4,21] make use of
path specific causal effect. Their solutions also need counterfactual reasoning
and they do not fit our problem setting.

Definition 6. (Problem definition). Given G, A and X as described above,
and classier Ŷ = f(A,X). The audit is to determine if a prediction on an
individual (X = xi) is fair, i.e. |CDE(xi)| < τ where τ is a threshold determined
by the regulatory policy and Y in CDE(xi) is replaced by Ŷ .

4 Estimating CDE

For the sake of fairness audit, the protected variable A is assumed to be a parent
node of Y so we can use CDE for the audit. The results in this section are true
in general, not just for auditing classifiers. Due to page limitations, all the proofs
of theorems will be presented in Appendix B.

Theorem 1. DAG G contains variables A and Y , and variable set X where (A∪
Y ) ∩ X = ∅. The causal sufficiency is satisfied. P (y | do(A = a), do(X = x)) =
P (y | A = a, Pa′(Y ) = pa) where Pa′(Y ) is the set of all parents of Y in G
excluding A.
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Fig. 3. DAGs for the examples of Theorem/Corollary. X1 to X6 are observed variables,
and U1 and U2 are unobserved variables.

Theorem 1 removes the descendant nodes of Y from the conditioning set
in the conditional probabilities for CDE estimation, and this removes possible
collider bias. Furthermore, it gives a succinct set of variables for estimating CDE.

For example, in Fig. 3(a), P (y | do(a), do(x1, x2, x3, x4)) = P (y | a, x1, x2)
based on Theorem 1, where we use xi for Xi = xi. The CDE is determined by
conditional probabilities on A, X1 and X2. Since X3 is not used in the condition-
ing set, there will be no collider bias. Theorem 1 is based on the causal sufficiency
assumption, which assumes that there are no unobserved common causes in the
data set. In real-world applications, unobserved variables are unavoidable. When
there are unobserved variables, how do we estimate CDE? The following corol-
lary will show that they do not invalidate the result of Theorem 1.

Corollary 1. Let Ca(Y ) include all the direct causes and only direct causes of
Y except A. P (y | do(A = a), do(X = x)) = P (y | A = a,Ca(Y ) = ca).

Corollary 1 indicates that discrimination detection is sound when the
audit agency knows all the direct causes of Y and uses them as the
conditioning set when calculating CDE. For example, in Fig. 3(b), P (y |
do(a), do(x1, x2, x3, U1)) = P (y | a, x1, x2) based on Corollary 1. Unobserved
ancestral variables of Y are blocked off from Y by X1 and X2, and they do not
affect the probability of Y . The unobservable variables can be in the descendant
nodes of Y too, but they do not affect the CDE estimation since they will not
be used anyway.

We will further explain why direct causes are necessary for Corollary 1. Let
Fig. 3(c) be a true DAG with two unobserved variables U1 and U2. X2 is not
a direct cause of Y . Since U1 and U2 are unobserved, X2 is perceived as a
parent of Y in the observed data. If X2 is used to estimate CDE, the estimation
will be biased since the back door path (Y,U1, U2,X1, A) is opened when X2

is conditioned on. In this case, X1 is necessary to block the path. When both
X1 and X2 are included, the CDE estimation is unbiased. Sometimes, we need
redundancy to prevent such a biased estimation.

Both Theorem 1 and Corollary 1 give a succinct conditioning set for CDE
estimation. In fact, a superset of the direct causes works as long as the superset
does not contain descendant nodes of Y . In a DAG, ancestral nodes represent
the direct causes and indirect causes of Y .
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Corollary 2. Let B include all the direct causes and some (or all) indirect
causes of Y . We have P (y | do(A = a), do(X = x)) = P (y | A = a,B = b).

Corollary 2 allows some redundancy in the conditioning set comparing to
Corollary 1. In practice, the redundancy gives a flexibility for users to determine
the direct causes of Y . Sometimes, a direct cause and an indirect cause are diffi-
cult to distinguish, and Corollary 2 indicates that including both does not bias
the CDE estimation. For example, in Fig. 3(d), P (y | do(a), do(x1, x2, x3, x4)) =
P (y | a, x1, x2) = P (y | a, x1, x2, x4) based on Corollary 2 if X1 and X2 are all
direct causes of Y . Let us assume that Fig. 3(d) is the true DAG, but a gov-
ernment agency has a DAG as Fig. 3(e) since they do not know which one of
X1 and X4 is the direct cause of Y . A CDE estimation based on the imprecise
DAG in Fig. 3(e), i.e. P (y | do(a), do(x1, x2, x3, x4)) = P (y | a, x1, x2, x4) is also
unbiased.

5 Implementing Unbiased Situation Test

We summarise the discussion and propose the following unbiased situation test.

Definition 7 (Unbiased Situation Test (UST)). UST exams whether a
classifier Ŷ = f() is fair for a given case xi by calculating CDE(xi) = P (Ŷ =
1 | A = 1,B = bi) − P (Ŷ = 1 | A = 0,B = bi), where B is the set of direct
causes and some (or all) indirect causes of Y . The test case xi is discriminated
if |CDE(xi)| ≥ τ , where τ is a threshold specified by the regulatory policy.

All variables in the problem except (A, Y ) can be categorized into two types:
B and C. B is the set of ancestral nodes of Y which can be identified by the
regulatory policy, and C includes others. Note that irrelevant variables which
are independent of Y are not in X.

To conduct UST as in Definition 7, one problem is that an audit agency can-
not obtain the conditional probability P (Ŷ = 1 | A = a,B = bi) directly since
it does not access the training data set or a unbiased sample of the population.

Algorithm 1. Unbiased Situation Test (UST)
Input: Classifier f(), X = B ∪ C as defined in the text. P (C = ci). Test cases DTest.
The threshold τ .
Output: L, a list of discriminated cases in DTest.

1: for each ri ∈ DTest do
2: Let r′

i be the record by flipping the value of A in ri
3: Let P (Ŷ = 1 | ri) = f(ri) and P (Ŷ = 1 | r′

i) = f(r′
i)

4: Obtain P (Ŷ = 1 | A = A(ri),B = B(ri)) and P (Ŷ = 1 | A = A(r′
i),B = B(r′

i))
by Equation 1 where A() and B() return values of A and B in the records
respectively

5: Conduct situation test by Definition 7 and update L
6: end for
7: Return L
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Instead, it can have P (Ŷ = 1 | A = a,B = bi,C = ci) from the classifier f().
Therefore, the following marginalisation is used:

P (ŷ | A = a,B = bi) =
∑

ci∈C

P (ŷ | a,bi,C = ci)P (ci) (1)

where ŷ denotes Ŷ = 1, and probability P (ci) can be obtained from some sources,
such as government census data. The algorithm for UST is presented in Algo-
rithm 1. The complexity for UST algorithm is O(n), where n is the size of DTest,
i.e. linear to the number of test records.

6 Experiments

In this section, we first demonstrate UST algorithm can correct the spurious
associations generated by collider. Then, we simulate the audit process by using
real-world data set. We only compare UST with NST in population-level sam-
pling since other situation test methods, such as, CST [25], k-NN based situation
test [15] need to access training data set which is unavailable in our problem.
We also demonstrate that data-based audit method fails in unrepresentative
sampling but UST works. Finally, we apply the UST algorithm to compare fair-
ness for different models and guide the audit agency to choose the model. The
experimental settings and details can be found in the full version [22].

6.1 Correcting Collider Biases

We construct synthetic data sets including a collider as discussed in the full
version [22]. UST has significantly reduced biases in CDE estimation. Bias is used
to measure the error between an estimated CDE and the true CDE. Biases of
including and not including a collider are shown in Table 2. The later is the UST
method which corrects biases of a collider in data by directly using Corollary 2.

Table 2. UST has significantly
reduced biases caused by a collider.

Trials Bias (with collider) Bias (UST)

1 0.143 ± 0.011 0.072 ± 0.004

2 0.154 ± 0.013 0.074 ± 0.004

3 0.149 ± 0.012 0.066 ± 0.004

4 0.149 ± 0.014 0.067 ± 0.004

5 0.152 ± 0.012 0.069 ± 0.004

Table 3. Suburb variable (collier)
improves the accuracy of classifica-
tion models.

Acc. w/ Sub Acc. w/o Sub

DT 89.66% 81.01%

SVM 89.60% 80.93%

RF 89.81% 80.86%

NN 89.64% 80.85%
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6.2 Simulating an Audit Process Using Adult Data Set

The Adult data set from UCI Machine Learning Repository [1] is used to simulate
audit process as shown in Fig. 4. We use the Adult data set as the population
for generating the ground truths. A company has a sample (50%) as the private
data to build a model. The red dashed line represents the information that the
audit agency has access to. The ground truths are generated from the population
and all causes of Y .

Fig. 4. A simulation of audit process
using Adult data set

Race is the protected variable and
Salary is the outcome. Other variables
are Education level, Marriage statues,
Work hour, Work class, and they all
determine the salary. We simulate a Sub-
urb variable as a collider. The accuracy
of a classifier is significantly higher when
the Suburb is used than not as shown in
Table 3. The accuracy improvement is due
to the spurious associations.

6.3 Comparing the Audit Performance of NST and UST

We apply UST to audit a few well-known classifiers built from sample data
set. NST (introduced in the introduction) is used for the comparison since it is
the only method for assessing the fairness of a classifier without accessing the
training data set. We use precision and recall for the comparison. The ground
truth for each audit case is calculated by using the population and the causes of
Y . Audit cases are k% records randomly selected from the population. For each
k, we resample audit cases 10 times and report the average precision and recall.

UST outperforms NST in both precision and recall as shown in Table 4. With
the increasing number of audit cases, the deviations of both methods decrease.
From the gaps between the precision and recall of NST and UST, we see that
the collider bias deteriorates the detection performance of NST significantly.

Table 4. The audit performance comparison of NST and UST. The higher values are
highlighted. The standard error is shown in brackets.

k = 0.1% k = 0.5% k = 1%

NST UST NST UST NST UST

DT Recall 59.6%(0.96) 79.8%(0.11) 56.7%(0.27) 73.3%(0.05) 56.3%(0.05) 71.7%(0.10)

Precision 84.4%(0.32) 98.1%(0.16) 78.9%(0.06) 99.1%(0.01) 80.3%(0.02) 98.8%(0.01)

SVM Recall 77.9%(1.18) 87.8%(0.26) 75.7%(0.17) 89.9%(0.03) 74.1%(0.06) 89.1%(0.02)

Precision 68.1%(0.73) 83.4%(0.14) 65.1%(0.11) 79.9%(0.06) 64.6%(0.13) 81.0%(0.05)

RF Recall 56.1%(1.91) 73.8%(0.32) 58.2%(0.23) 66.8%(0.03) 57.7%(0.09) 65.2%(0.14)

Precision 88.6%(0.17) 96.4%(0.25) 86.8%(0.02) 97.8%(0.01) 86.9%(0.04) 98.4%(0.01)

NN Recall 65.9%(1.17) 74.9%(0.14) 67.6%(0.16) 71.5%(0.10) 67.9%(0.06) 69.2%(0.08)

Precision 85.9%(0.24) 96.7%(0.21) 81.7%(0.04) 97.1%(0.01) 82.8%(0.02) 97.2%(0.01)



Assessing Classifier Fairness with Collider Bias 271

6.4 Data Based Audit May Be Biased

Removing the collider from the data can be used as an alternative method to
UST. However, a data-based audit (DBA) relies on the representativeness of the
audit cases for the population. The representativeness is difficult to be ensured
because individuals who receive unfair treatments likely require the authority
to audit their results. An audit agency does not have a resource to collect a
representative sample for auditing. We simulate the unrepresentative audit cases
by over (under) sampling discriminatory cases in the population. In the Adult
data set, about 15% of the individuals are discriminatory and this ratio is the
baseline. We vary discriminatory ratios of 1% data set.

The performance of DBA deteriorates significantly when a discriminatory
ratio deviates from the baseline as shown in Table 5. Note that all discrimination
detection methods based on data have the same limitation. In contrast, UST
maintains similar performance.

Table 5. The audit performance comparison of DBA and UST with discriminatory
sample. The higher values are highlighted. The standard error is shown in brackets.

Discriminatory Ratio=0% Discriminatory Ratio=10% Discriminatory Ratio=20%

DBA UST DBA UST DBA UST

DT Recall 60.1%(1.18) 72.2%(0.06) 57.8%(1.72) 71.7%(0.07) 60.9%(0.91) 71.8%(0.10)

Precision 84.6%(0.23) 97.5%(0.01) 78.2%(0.35) 96.2%(0.01) 70.9%(0.11) 95.1%(0.01)

SVM Recall 39.8%(1.64) 89.0%(0.01) 40.0%(1.51) 89.5%(0.01) 35.6%(2.57) 89.8%(0.01)

Precision 77.8%(0.19) 82.5%(0.03) 71.2%(0.31) 76.0%(0.05) 56.4%(1.02) 67.7%(0.06)

RF Recall 39.9%(0.18) 65.6%(0.06) 40.4%(0.14) 65.2%(0.06) 39.5%(1.13) 65.2%(0.05)

Precision 78.9%(0.14) 97.3%(0.02) 72.6%(0.16) 96.4%(0.02) 61.2%(0.26) 94.2%(0.05)

NN Recall 46.1%(2.02) 69.8%(0.07) 45.7%(2.11) 69.8%(0.06) 39.4%(2.26) 69.4%(0.09)

Precision 80.6%(0.11) 95.0%(0.03) 73.6%(0.29) 93.0%(0.03) 60.0%(0.51) 90.1%(0.07)

6.5 Rank Models Based on Fairness

We show that UST can be used for comparing the fairness of different models.
We first discuss the metrics for the comparison. After discrimination detection
on a model using audit cases with ground truths, we obtain True Positive (TF),
False Positive (FP), True Negative (TN), and False Negative (FN). FN indi-
cates the cases that are unfair but are corrected to be fair by the model. They
are favourable for fair predictions, and we use correction rate, CR = FN

TP+FN ,
to represent the proportion of true unfair cases being corrected by a model. In
contrast, FP represents that the cases that are fair become unfair after model
predictions. These cases are called reversed discrimination and are unfavourite
for predictions. We use the reversion rate, RR = FP

FP+TN , to represent the pro-
portion of fair cases being reversed by a model. We wish the revision rate is as
small as possible.
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Table 6. The audit results of var-
ious models.

CR(↑) RR(↓)
DT 29.09% ± 0.079 1.69% ± 0.001
SVM 10.05% ± 0.024 39.37% ± 0.049
RF 35.24% ± 0.147 1.07% ± 0.001
NN 31.48% ± 0.064 2.76% ± 0.001

The CR and RR of four classifiers are
shown in Table 6. Random Forest is the fairest
model based on the two measures. Random
Forest has corrected 35.24% of unfair cases,
and only reversed 1.07% of fair cases to unfair.
Note that, their prediction accuracies are very
similar, but their CR and RR are different.
This assessment shows that some errors made by a model are better than others
in terms of the fairness.

7 Related Works

The work belongs to discrimination detection. Detection methods are divided
into the group, and individual-based. Another division of the methods is associ-
ation or causal based.

At the group level, a number of metrics have been defined to detect dis-
crimination. Demographic parity, a well-known fairness measurement, is defined
by [7]. Other measurements including equalised odds [9], predictive rate parity
[23]. However, these group-based fairness does not necessarily mean individual
fairness. Many algorithms focus on detecting discrimination at the individual
level. Authors in [19] use existing inequality indices from economics to measure
individual level fairness. Speicher et al. [14] propose an individual level discrim-
ination detector, which is used to prioritise data samples and aims to improve
the subgroup fairness measure of disparate impact.

Under the causal framework, Li et al. [13] use the (conditional) average causal
effect to quantify fairness for (sub)group level discrimination detection. Coun-
terfactual fairness [12] is an attractive definition of individual level fairness mea-
surements by causality. It means that a decision is fair towards an individual
if it is the same in both the actual world and a counterfactual world (when a
value of a protected variable is changed). However, it needs strong assumptions.
Zhang et al. [26] use nature direct effect and nature indirect effect to quantify
fairness. The path-specific causal effect [4,21] have been used to quantify fairness
when the regulatory policy recognises some causal paths involving a protected
variable fair. Nature direct (indirect) effect and path-specific causal effect all
need counterfactual reasoning and are difficult to implement in practice since
the strong assumptions are related to counterfactual reasoning.

Situation test related work has been discussed in the introduction. The above-
mentioned related work only introduces some main influential contributions. For
more related work, please refer to the literature review [3,6,16,24].

8 Conclusions

In this paper, we have discussed collider bias in fairness assessment. We have pre-
sented theoretical results based on the graphical causal model to avoid collider
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biases in fairness assessment. The results are useful for discrimination detec-
tion and also for feature selection for building fair classifiers. We have proposed
an Unbiased Situation Test (UST) algorithm for the fairness assessment of a
classifier without accessing the training data set or a sample of the population.
Experimental results show that UST effectively reduces collider biases and can
be used to assess the fairness of a classifier without accessing to data. The UST
is promising for an audit agency to audit machine learning models by private
companies and organisations.

A Additional Definition and Theorem

Definition 8 (d-separation [17]). A path π in a DAG is said to be d-separated
(or blocked) by a set of nodes Z iff (1) π contains a chain Vi → Vk → Vj and a
fork Vi ← Vk → Vj node such that the middle node Vk is in Z, or (2) π contains
a collider Vk such that Vk is not in Z and no descendant of Vk is in Z.

Theorem 2 (Rules of do-Calculus [17]). Let X,Y,Z,W be arbitrary dis-
joint sets of variables in a causal DAG G. The following rules hold, where
x,y, z,w are the shorthands of X = x,Y = y,Z = z and W = w respectively.

Rule 1. (Insertion/deletion of observations):
P (y | do(x), z,w) = P (y | do(x),w), if (Y ⊥⊥ Z | X,W) in GX.
Rule 2. (Action/observation exchange):
P (y | do(x), do(z),w) = P (y | do(x), z,w), if (Y ⊥⊥ Z | X,W) in GXZ.
Rule 3. (Insertion/deletion of actions):
P (y | do(x), do(z),w) = P (y | do(x),w), if (Y ⊥⊥ Z | X,W) in G

XZ(W)
,

where Z(W) is the nodes in Z that are not ancestors of any node in W in GX.

B Proofs

B.1 Proof of Theorem 1

Theorem 1. DAG G contains variables A and Y , and variable set X where (A∪
Y ) ∩ X = ∅. The causal sufficiency is satisfied. P (y | do(A = a), do(X = x)) =
P (y | A = a, Pa′(Y ) = pa) where Pa′(Y ) is the set of all parents of Y in G
excluding A.

Proof. Firstly, let X = {C ∪ Q} where C contains descendant nodes of
Y , and Q contains non-descent nodes of Y . We have P (y | do(A =
a), do(C = c), do(Q = q)) = P (y | do(A = a), do(Q = q)). This is achieved by
repeatedly using Rule 3 of Theorem 2. We show this by an example where C ∈ C,
P (y | do(A = a), do(C = c), do(Q = q)) = P (y | do(A = a), do(Q = q)) because
Y ⊥⊥C in DAG GA,C where the incoming edges to A and to C have been removed.

Secondly, we consider P (y | do(A = a), do(Q = q)) only. Based on the
Markov condition 1, Y is independent of all its non-descendant nodes given
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its parents. Therefore, P (y | do(A = a), do(Q = q)) = P (y | do(A =
a), do(Pa′(Y ) = pa)).

Thirdly, we will prove P (y|do(A = a), do(Pa′(Y ) = pa)) = P (y | A =
a, Pa′(Y ) = pa). This can be achieved by repeatedly applying Rule 2 of Theo-
rem 2.

Let Pa(Y ) = {A,X1,X2, . . . , Xk}.

P (y | do(A = a), do(X1 = x1), do(X2 = x2), . . . , do(Xk = xk))
= P (y | A = a, do(X1 = x1)do(X2 = x2), . . . , do(Xk = xk))
Since Y ⊥⊥ A|X1,X2, . . . , Xk in GX1,X2,...,Xk,A

= P (y | A = a,X1 = x1, do(X2 = x2), . . . , do(Xk = xk))
Since Y ⊥⊥ X1|A,X2, . . . , Xk) in GX2,...,Xk,X1

Repeat k − 1 times

= P (y | A = a,X1 = x1,X2 = x2, . . . , Xk = xk)
= P (y | A = a, Pa′(Y ) = pa)

Now, we get,

P (y | do(A = a), do(X = x)) = P (y | A = a, Pa′(Y ) = pa)

B.2 Proof of Corollary 1

Corollary 1. Let Ca(Y ) include all the direct causes and only direct causes of
Y except A. P (y | do(A = a), do(X = x)) = P (y | A = a,Ca(Y ) = ca).

Proof. Direct causes of Y will be parent nodes of Y in any DAG even when the
unobserved common causes are included, i.e. the causal sufficiency is unsatisfied.
Since Pa′(Y ) = Ca(Y ) and there is not an unobserved variable in between a
direct cause and Y , P (y | do(A = a), do(X = x)) = P (y | A = a,Ca(Y ) = ca)
can be derived following the same procedure in Theorem 1.

Since other variables apart from Pa′(Y ) are not used in reducing P (y |
do(A = a), do(X = x)), the unobserved common casues between these variables
are irrelevant to the deduction and do not affect the above conclusion.

B.3 Proof of Corollary 2

Corollary 2. Let B include all the direct causes and some (or all) indirect causes
of Y . We have P (y | do(A = a), do(X = x)) = P (y | A = a,B = b).

Proof. Let B = Ca′(Y ) ∪ R, and R includes indirect causes of Y . Following
Corollary 1, P (y | do(A = a), do(X = x)) = P (y | A = a,Ca′(Y ) = ca). Based
on the Markov condition 1, Y is independent of R given A ∪ Ca′(Y ). Hence,
P (y | A = a,Ca′(Y ) = ca) = P (y | A = a,B).



Assessing Classifier Fairness with Collider Bias 275

References

1. Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007)
2. Bendick, M.: Situation testing for employment discrimination in the United States

of America. Horizons stratégiques 3, 17–39 (2007)
3. Caton, S., Haas, C.: Fairness in machine learning: a survey (2020). arXiv preprint

arXiv:2010.04053
4. Chiappa, S.: Path-specific counterfactual fairness. In: AAAI, pp. 7801–7808 (2019)
5. Cole, S.R., et al.: Illustrating BIAS due to conditioning on a collider. Int. J. Epi-

demiol. 39(2), 417–20 (2010)
6. Corbett-Davies, S., Goel, S.: The measure and mismeasure of fairness: a critical

review of fair machine learning (2018). arXiv preprint arXiv:1808.00023
7. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-

ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214–226 (2012)

8. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.:
Certifying and removing disparate impact. In: KDD, pp. 259–268 (2015)

9. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
In: NeurIPS, pp. 3315–3323 (2016)

10. Hernán, M.A., Robins, J.M.: Causal Inference: What If. Chapman & Hall/CRC,
Boca Raton (2020)

11. Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D.,
Schölkopf, B.: Avoiding discrimination through causal reasoning. In: NeurIPS, pp.
656–666 (2017)

12. Kusner, M., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: NeurIPS,
pp. 4069–4079 (2017)

13. Li, J., Liu, J., Liu, L., Le, T.D., Ma, S., Han, Y.: Discrimination detection by
causal effect estimation. In: BigData, pp. 1087–1094. IEEE (2017)

14. Lohia, P.K., Ramamurthy, K.N., Bhide, M., Saha, D., Varshney, K.R., Puri, R.:
Bias mitigation post-processing for individual and group fairness. In: ICASSP, pp.
2847–2851. IEEE (2019)

15. Luong, B.T., Ruggieri, S., Turini, F.: K-NN as an implementation of situation
testing for discrimination discovery and prevention. In: KDD, pp. 502–510 (2011)

16. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
BIAS and fairness in machine learning. ACM Comput. Surv. 54(6), 1–35 (2021)

17. Pearl, J.: Causality. Cambridge University Press (2009)
18. Pearl, J., Mackenzie, D.: The Book of Why. Basic Books, New York (2018)
19. Speicher, T., et al.: A unified approach to quantifying algorithmic unfairness: mea-

suring individual & group unfairness via inequality indices. In: KDD, pp. 2239–2248
(2018)

20. Spirtes, P., Glymour, C.N., Scheines, R., Heckerman, D.: Causation, Prediction,
And Search. MIT Press (2000)

21. Wu, Y., Zhang, L., Wu, X., Tong, H.: Pc-fairness: a unified framework for measuring
causality-based fairness. In: NeurIPS, vol. 32 (2019)

22. Xu, Z., et al.: Assessing Classifier Fairness With Collider Bias (2022). arXiv
preprint arXiv:2010.03933

23. Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness beyond
disparate treatment & disparate impact: Learning classification without disparate
mistreatment. In: WWW, pp. 1171–1180 (2017)

http://arxiv.org/abs/2010.04053
http://arxiv.org/abs/1808.00023
http://arxiv.org/abs/2010.03933


276 Z. Xu et al.

24. Zhang, L., Wu, X.: Anti-discrimination learning: a causal modeling-based frame-
work. Int. J. Data Sci. Anal. 4(1), 1–16 (2017). https://doi.org/10.1007/s41060-
017-0058-x

25. Zhang, L., Wu, Y., Wu, X.: Situation testing-based discrimination discovery: a
causal inference approach. In: IJCAI, pp. 2718–2724 (2016)

26. Zhang, L., Wu, Y., Wu, X.: A causal framework for discovering and removing direct
and indirect discrimination. In: IJCAI, pp. 3929–3935 (2017)

https://doi.org/10.1007/s41060-017-0058-x
https://doi.org/10.1007/s41060-017-0058-x

	Assessing Classifier Fairness with Collider Bias
	1 Introduction
	2 Background
	3 Problem Definition
	4 Estimating CDE
	5 Implementing Unbiased Situation Test
	6 Experiments
	6.1 Correcting Collider Biases
	6.2 Simulating an Audit Process Using Adult Data Set
	6.3 Comparing the Audit Performance of NST and UST
	6.4 Data Based Audit May Be Biased
	6.5 Rank Models Based on Fairness

	7 Related Works
	8 Conclusions
	A  Additional Definition and Theorem
	B  Proofs
	B.1  Proof of Theorem 1
	B.2  Proof of Corollary 1
	B.3  Proof of Corollary 2

	References




